Abstract
This paper presents that phasor-quaternion neural networks (PQNN) reduce not only the phase singular points (SP) in interferometric synthetic aperture radar (InSAR) but also the spread of polarization states in polarimetric SAR (PolSAR). This result reveals that the PQNN deals with the dynamics of transversal wave, having phase and polarization, in an appropriate manner. That is, the phasor quaternion is not just a formally combined number but, instead, an effective number realizing generalization ability in phase and polarization space in the neural networks.
This work was supported in part by JSPS KAKENHI under Grant No. 18H04105, and also in part by Cooperative Research Project Program of the Research Institute of Electrical Communication, Tohoku University. The Advanced Land Observing Satellite (ALOS) original data are copyrighted by the Japan Aerospace Exploration Agency (JAXA) and provided under JAXA Fourth ALOS Research Announcement PI No. 1154 (AH).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boerner, W.M.: Recent advances in extra-wide-band polarimetry, interferometry and polarimetric interferometry in synthetic aperture remote sensing and its applications. IEE Proc. - Radar Sonar Navig. 150(3), 113–124 (2003)
Lee, J.S., et al.: A review of polarimetric SAR algorithms and their applications. J. Photogramm. Remote Sens. 9, 31–80 (2004)
Goldstein, R.M., Zebker, H.A., Werner, C.L.: Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23(4), 713–720 (1988)
Lee, J.S., Jurkevich, I., Dewaele, P., Wambacq, P., Oosterlinck, A.: Speckle filtering of synthetic aperture radar images: a review. Remote Sens. Rev. 8, 313–340 (1994)
Lombardini, F.: Optimum absolute phase retrieval in three-element SAR interferometer. Electron. Lett. 34(15), 1522–1524 (1998)
Lee, J.S., Papathanassiou, K., Ainsworth, T., Grunes, M., Reigber, A.: A new technique for phase noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 36(5), 1456–1465 (1998)
Ghiglia, D.C., Pritt, M.D.: Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software. Wiley, Hoboken (1998)
Goldstein, R.M., Werner, C.L.: Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 25(21), 4035–4038 (1998)
Gutmann, B., Weber, H.: Phase unwrapping with the branch-cut method: role of phase-field direction. Appl. Opt. 39(26), 4802–4816 (2000)
Suksmono, A.B., Hirose, A.: Adaptive noise reduction of InSAR images based on a complex-valued MRF model and its application to phase unwrapping problem. IEEE Trans. Geosci. Remote Sens. 40(3), 699–709 (2002)
Yamaki, R., Hirose, A.: Singularity-spreading phase unwrapping. IEEE Trans. Geosci. Remote Sens. 45(10), 3240–3251 (2007)
Suksmono, A.B., Hirose, A.: Progressive transform-based phase unwrapping utilizing a recursive structure. IEICE Trans. Commun. E89–B(3), 929–936 (2006)
Oshiyama, G., Hirose, A.: Distortion reduction in singularity-spreading phase unwrapping with pseudo-continuous spreading and self-clustering active localization. IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens. 8(8), 3846–3858 (2015)
Cao, M., Li, S., Wang, R., Li, N.: Interferometric phase denoising by median patch-based locally optimal Wiener filter. IEEE Geosci. Remote Sens. Lett. 12(8), 1730–1734 (2015)
Oyama, K., Hirose, A.: Adaptive phase-singular-unit restoration with entire-spectrum-processing complex-valued neural networks in interferometric SAR. Electron. Lett. 54(1), 43–45 (2018)
Costantini, M., Malvarosa, F., Minati, F.: A general formulation for redundant integration of finite differences and phase unwrapping on a sparse multidimensional domain. IEEE Trans. Geosci. Remote Sens. 50(3), 758–768 (2012)
Danudirdjo, D., Hirose, A.: InSAR image regularization and DEM error correction with fractal surface scattering model. IEEE Trans. Geosci. Remote Sens. 53(3), 1427–1439 (2015)
Danudirdjo, D., Hirose, A.: Anisotropic phase unwrapping for synthetic aperture radar interferometry. IEEE Trans. Geosci. Remote Sens. 53(7), 4116–4126 (2015)
Tomioka, S., Nishiyama, S.: Phase unwrapping for noisy phase map using localized compensator. Appl. Opt. 51(21), 4984–4994 (2012)
Cloude, S.R., Pottier, E.: A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 34, 498–518 (1996)
Cloude, S.R., Pottier, E.: An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 35, 68–78 (1997)
Freeman, A., Durden, S.L.: A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 36, 963–973 (1998)
Touzi, R., Boerner, W.M., Lee, J.S., Lueneburg, E.: A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction. Can. J. Remote Sens. 30(3), 380–407 (2004)
Yamaguchi, Y., Moriyama, T., Ishido, M., Yamada, H.: Four component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 43(8), 1699–1706 (2005)
Touzi, R., Raney, R.K., Charbonneau, F.: On the use of permanent symmetric scatterers for ship characterization. IEEE Trans. Geosci. Remote Sens. 42(10), 2039–2045 (2004)
Wei, B., Yu, J., Wang, C., Wu, H., Li, J.: PolSAR image classification using a semi-supervised classifier based on hypergraph learning. Remote Sens. Lett. 5(4), 386–395 (2014)
Sunaga, Y., Natsuaki, R., Hirose, A.: Land form classification and similar land-shape discovery by using complex-valued convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 57(10), 7907–7917 (2019)
Chen, K.S., Huang, W.P., Tsay, D.H., Amar, F.: Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network. IEEE Trans. Geosci. Remote Sens. 34, 814–820 (1996)
Shang, F., Hirose, A.: Quaternion neural-network-based PolSAR land classification in poincare-sphere-parameter space. IEEE Trans. Geosci. Remote Sens. 52(9), 5693–5703 (2014)
Shang, F., Naoto, K., Hirose, A.: Degree of polarization based data filter for fully polarimetric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 57(6), 3767–3777 (2019)
Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H.: Quaternion neural network with geometrical operators. J. Intell. Fuzzy Syst. 15, 149–164 (2004)
Kinugawa, K., Fang, S., Usami, N., Hirose, A.: Isotropization of quaternion-neural-network-based PolSAR adaptive land classification in poincare-sphere parameter space. IEEE Geosci. Remote Sens. Lett. 15(8), 1234–1238 (2018)
Kim, H., Hirose, A.: Unsupervised fine land classification using quaternion auto-encoder-based polarization feature extraction and self-organizing mapping. IEEE Trans. Geosci. Remote Sens. 56(3), 1839–1851 (2018)
Kim, H., Hirose, A.: Unsupervised hierarchical land classification using self-organizing feature codebook for decimeter-resolution PolSAR. IEEE Trans. Geosci. Remote Sens. 57(4), 1894–1905 (2019)
Cloude, S., Papathanassiou, K.: Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 36(5), 1551–1565 (1998)
Hirose, A., Yoshida, S.: Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn. Syst. 23, 541–551 (2012)
Hirose, A., Yoshida, S.: Relationship between phase and amplitude generalization errors in complex- and real-valued feedforward neural networks. Neural Comput. Appl. 22(7–8), 1357–1366 (2013). https://doi.org/10.1007/s00521-012-0960-z
Hirose, A., Yoshida, S.: Comparison of complex- and real-valued feedforward neural networks in their generalization ability. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 526–531. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24955-6_63
Mandic, D.P., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters - Non circularity. Widely Linear and Neural Models, Wiley (2009)
Nitta, T. (ed.): Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters. Information Science Reference, Pennsylvania (2009)
Aizenberg, I.: Complex-Valued Neural Networks with Multi-Valued Neurons. Studies in Computational Intelligence. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20353-4
Hirose, A. (ed.): Complex-Valued Neural Networks: Advances and Applications. IEEE Press Series on Computational Intelligence. IEEE Press and Wiley, New Jersey (2013)
Hirose, A. (ed.): Complex-valued neural networks: theories and applications. Series on Innovative Intelligence, vol. 5. World Scientific Publishing, Singapore (2003)
Hirose, A.: Complex-Valued Neural Networks, 2nd edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27632-3
Oyama, K., Hirose, A.: Phasor quaternion neural networks for singular-point compensation in polarimetric-interferometric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 57(5), 2510–2519 (2019)
Lee, J.S., Miller, A.R., Hoppel, K.W.: Statistics of phase difference and product magnitude of multi-look processed Gaussian signals. Waves in Random Media 4(3), 307–319 (1994)
Shimada, T., Natsuaki, R., Hirose, A.: Pixel-by-pixel scattering mechanism vector optimization in high resolution PolInSAR. IEEE Trans. Geosci. Remote Sens. 56(5), 2587–2596 (2018)
Otsuka, Y., Natsuaki, R., Hirose, A.: Consideration on singular-point generating mechanisms by analyzing the effect of phase-and-polarization optimization in PolInSAR. IEEE J. Sel. Appl. Earth Observ. Remote Sens. 13(4), 1625–1638 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Oyama, K., Hirose, A. (2020). Reduction of Polarization-State Spread in Phase-Distortion Mitigation by Phasor-Quaternion Neural Networks in PolInSAR. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_60
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)