Reduction of Polarization-State Spread in Phase-Distortion Mitigation by Phasor-Quaternion Neural Networks in PolInSAR | SpringerLink
Skip to main content

Reduction of Polarization-State Spread in Phase-Distortion Mitigation by Phasor-Quaternion Neural Networks in PolInSAR

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

  • 2472 Accesses

Abstract

This paper presents that phasor-quaternion neural networks (PQNN) reduce not only the phase singular points (SP) in interferometric synthetic aperture radar (InSAR) but also the spread of polarization states in polarimetric SAR (PolSAR). This result reveals that the PQNN deals with the dynamics of transversal wave, having phase and polarization, in an appropriate manner. That is, the phasor quaternion is not just a formally combined number but, instead, an effective number realizing generalization ability in phase and polarization space in the neural networks.

This work was supported in part by JSPS KAKENHI under Grant No. 18H04105, and also in part by Cooperative Research Project Program of the Research Institute of Electrical Communication, Tohoku University. The Advanced Land Observing Satellite (ALOS) original data are copyrighted by the Japan Aerospace Exploration Agency (JAXA) and provided under JAXA Fourth ALOS Research Announcement PI No. 1154 (AH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boerner, W.M.: Recent advances in extra-wide-band polarimetry, interferometry and polarimetric interferometry in synthetic aperture remote sensing and its applications. IEE Proc. - Radar Sonar Navig. 150(3), 113–124 (2003)

    Article  Google Scholar 

  2. Lee, J.S., et al.: A review of polarimetric SAR algorithms and their applications. J. Photogramm. Remote Sens. 9, 31–80 (2004)

    Google Scholar 

  3. Goldstein, R.M., Zebker, H.A., Werner, C.L.: Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23(4), 713–720 (1988)

    Article  Google Scholar 

  4. Lee, J.S., Jurkevich, I., Dewaele, P., Wambacq, P., Oosterlinck, A.: Speckle filtering of synthetic aperture radar images: a review. Remote Sens. Rev. 8, 313–340 (1994)

    Article  Google Scholar 

  5. Lombardini, F.: Optimum absolute phase retrieval in three-element SAR interferometer. Electron. Lett. 34(15), 1522–1524 (1998)

    Article  Google Scholar 

  6. Lee, J.S., Papathanassiou, K., Ainsworth, T., Grunes, M., Reigber, A.: A new technique for phase noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 36(5), 1456–1465 (1998)

    Article  Google Scholar 

  7. Ghiglia, D.C., Pritt, M.D.: Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  8. Goldstein, R.M., Werner, C.L.: Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 25(21), 4035–4038 (1998)

    Article  Google Scholar 

  9. Gutmann, B., Weber, H.: Phase unwrapping with the branch-cut method: role of phase-field direction. Appl. Opt. 39(26), 4802–4816 (2000)

    Article  Google Scholar 

  10. Suksmono, A.B., Hirose, A.: Adaptive noise reduction of InSAR images based on a complex-valued MRF model and its application to phase unwrapping problem. IEEE Trans. Geosci. Remote Sens. 40(3), 699–709 (2002)

    Article  Google Scholar 

  11. Yamaki, R., Hirose, A.: Singularity-spreading phase unwrapping. IEEE Trans. Geosci. Remote Sens. 45(10), 3240–3251 (2007)

    Article  Google Scholar 

  12. Suksmono, A.B., Hirose, A.: Progressive transform-based phase unwrapping utilizing a recursive structure. IEICE Trans. Commun. E89–B(3), 929–936 (2006)

    Article  Google Scholar 

  13. Oshiyama, G., Hirose, A.: Distortion reduction in singularity-spreading phase unwrapping with pseudo-continuous spreading and self-clustering active localization. IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens. 8(8), 3846–3858 (2015)

    Article  Google Scholar 

  14. Cao, M., Li, S., Wang, R., Li, N.: Interferometric phase denoising by median patch-based locally optimal Wiener filter. IEEE Geosci. Remote Sens. Lett. 12(8), 1730–1734 (2015)

    Article  Google Scholar 

  15. Oyama, K., Hirose, A.: Adaptive phase-singular-unit restoration with entire-spectrum-processing complex-valued neural networks in interferometric SAR. Electron. Lett. 54(1), 43–45 (2018)

    Article  Google Scholar 

  16. Costantini, M., Malvarosa, F., Minati, F.: A general formulation for redundant integration of finite differences and phase unwrapping on a sparse multidimensional domain. IEEE Trans. Geosci. Remote Sens. 50(3), 758–768 (2012)

    Article  Google Scholar 

  17. Danudirdjo, D., Hirose, A.: InSAR image regularization and DEM error correction with fractal surface scattering model. IEEE Trans. Geosci. Remote Sens. 53(3), 1427–1439 (2015)

    Article  Google Scholar 

  18. Danudirdjo, D., Hirose, A.: Anisotropic phase unwrapping for synthetic aperture radar interferometry. IEEE Trans. Geosci. Remote Sens. 53(7), 4116–4126 (2015)

    Article  Google Scholar 

  19. Tomioka, S., Nishiyama, S.: Phase unwrapping for noisy phase map using localized compensator. Appl. Opt. 51(21), 4984–4994 (2012)

    Article  Google Scholar 

  20. Cloude, S.R., Pottier, E.: A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 34, 498–518 (1996)

    Article  Google Scholar 

  21. Cloude, S.R., Pottier, E.: An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 35, 68–78 (1997)

    Article  Google Scholar 

  22. Freeman, A., Durden, S.L.: A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 36, 963–973 (1998)

    Article  Google Scholar 

  23. Touzi, R., Boerner, W.M., Lee, J.S., Lueneburg, E.: A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction. Can. J. Remote Sens. 30(3), 380–407 (2004)

    Article  Google Scholar 

  24. Yamaguchi, Y., Moriyama, T., Ishido, M., Yamada, H.: Four component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 43(8), 1699–1706 (2005)

    Article  Google Scholar 

  25. Touzi, R., Raney, R.K., Charbonneau, F.: On the use of permanent symmetric scatterers for ship characterization. IEEE Trans. Geosci. Remote Sens. 42(10), 2039–2045 (2004)

    Article  Google Scholar 

  26. Wei, B., Yu, J., Wang, C., Wu, H., Li, J.: PolSAR image classification using a semi-supervised classifier based on hypergraph learning. Remote Sens. Lett. 5(4), 386–395 (2014)

    Article  Google Scholar 

  27. Sunaga, Y., Natsuaki, R., Hirose, A.: Land form classification and similar land-shape discovery by using complex-valued convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 57(10), 7907–7917 (2019)

    Article  Google Scholar 

  28. Chen, K.S., Huang, W.P., Tsay, D.H., Amar, F.: Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network. IEEE Trans. Geosci. Remote Sens. 34, 814–820 (1996)

    Article  Google Scholar 

  29. Shang, F., Hirose, A.: Quaternion neural-network-based PolSAR land classification in poincare-sphere-parameter space. IEEE Trans. Geosci. Remote Sens. 52(9), 5693–5703 (2014)

    Article  Google Scholar 

  30. Shang, F., Naoto, K., Hirose, A.: Degree of polarization based data filter for fully polarimetric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 57(6), 3767–3777 (2019)

    Article  Google Scholar 

  31. Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H.: Quaternion neural network with geometrical operators. J. Intell. Fuzzy Syst. 15, 149–164 (2004)

    MATH  Google Scholar 

  32. Kinugawa, K., Fang, S., Usami, N., Hirose, A.: Isotropization of quaternion-neural-network-based PolSAR adaptive land classification in poincare-sphere parameter space. IEEE Geosci. Remote Sens. Lett. 15(8), 1234–1238 (2018)

    Article  Google Scholar 

  33. Kim, H., Hirose, A.: Unsupervised fine land classification using quaternion auto-encoder-based polarization feature extraction and self-organizing mapping. IEEE Trans. Geosci. Remote Sens. 56(3), 1839–1851 (2018)

    Article  Google Scholar 

  34. Kim, H., Hirose, A.: Unsupervised hierarchical land classification using self-organizing feature codebook for decimeter-resolution PolSAR. IEEE Trans. Geosci. Remote Sens. 57(4), 1894–1905 (2019)

    Article  Google Scholar 

  35. Cloude, S., Papathanassiou, K.: Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 36(5), 1551–1565 (1998)

    Article  Google Scholar 

  36. Hirose, A., Yoshida, S.: Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn. Syst. 23, 541–551 (2012)

    Article  Google Scholar 

  37. Hirose, A., Yoshida, S.: Relationship between phase and amplitude generalization errors in complex- and real-valued feedforward neural networks. Neural Comput. Appl. 22(7–8), 1357–1366 (2013). https://doi.org/10.1007/s00521-012-0960-z

    Article  Google Scholar 

  38. Hirose, A., Yoshida, S.: Comparison of complex- and real-valued feedforward neural networks in their generalization ability. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 526–531. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24955-6_63

    Chapter  Google Scholar 

  39. Mandic, D.P., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters - Non circularity. Widely Linear and Neural Models, Wiley (2009)

    Google Scholar 

  40. Nitta, T. (ed.): Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters. Information Science Reference, Pennsylvania (2009)

    Google Scholar 

  41. Aizenberg, I.: Complex-Valued Neural Networks with Multi-Valued Neurons. Studies in Computational Intelligence. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20353-4

    Book  MATH  Google Scholar 

  42. Hirose, A. (ed.): Complex-Valued Neural Networks: Advances and Applications. IEEE Press Series on Computational Intelligence. IEEE Press and Wiley, New Jersey (2013)

    Google Scholar 

  43. Hirose, A. (ed.): Complex-valued neural networks: theories and applications. Series on Innovative Intelligence, vol. 5. World Scientific Publishing, Singapore (2003)

    Google Scholar 

  44. Hirose, A.: Complex-Valued Neural Networks, 2nd edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27632-3

    Book  MATH  Google Scholar 

  45. Oyama, K., Hirose, A.: Phasor quaternion neural networks for singular-point compensation in polarimetric-interferometric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 57(5), 2510–2519 (2019)

    Article  Google Scholar 

  46. Lee, J.S., Miller, A.R., Hoppel, K.W.: Statistics of phase difference and product magnitude of multi-look processed Gaussian signals. Waves in Random Media 4(3), 307–319 (1994)

    Article  Google Scholar 

  47. Shimada, T., Natsuaki, R., Hirose, A.: Pixel-by-pixel scattering mechanism vector optimization in high resolution PolInSAR. IEEE Trans. Geosci. Remote Sens. 56(5), 2587–2596 (2018)

    Article  Google Scholar 

  48. Otsuka, Y., Natsuaki, R., Hirose, A.: Consideration on singular-point generating mechanisms by analyzing the effect of phase-and-polarization optimization in PolInSAR. IEEE J. Sel. Appl. Earth Observ. Remote Sens. 13(4), 1625–1638 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Hirose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oyama, K., Hirose, A. (2020). Reduction of Polarization-State Spread in Phase-Distortion Mitigation by Phasor-Quaternion Neural Networks in PolInSAR. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics