Pixel-Semantic Revising of Position: One-Stage Object Detector with Shared Encoder-Decoder | SpringerLink
Skip to main content

Pixel-Semantic Revising of Position: One-Stage Object Detector with Shared Encoder-Decoder

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

Recently, many methods have been proposed for object detection. However, they cannot detect objects by semantic features, adaptively. According to channel and spatial attention mechanisms, we mainly analyze that different methods detect objects adaptively. Some state-of-the-art detectors combine different feature pyramids with many mechanisms. However, they require more cost. This work addresses that by an anchor-free detector with shared encoder-decoder with attention mechanism, extracting shared features. We consider features of different levels from backbone (e.g., ResNet-50) as the basis features. Then, we feed the features into a simple module, followed by a detector header to detect objects. Meantime, we use the semantic features to revise geometric locations, and the detector is a pixel-semantic revising of position. More importantly, this work analyzes the impact of different pooling strategies (e.g., mean, maximum or minimum) on multi-scale objects, and finds the minimum pooling can improve detection performance on small objects better. Compared with state-of-the-art MNC based on ResNet-101 for the standard MSCOCO 2014 baseline, our method improves detection AP of 3.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Bae, S.H.: Object detection based on region decomposition and assembly

    Google Scholar 

  3. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades

    Google Scholar 

  4. Dai, J., Yi, L., He, K., Jian, S.: R-FCN: object detection via region-based fully convolutional networks (2016)

    Google Scholar 

  5. Fei, W., et al.: Residual attention network for image classification (2017)

    Google Scholar 

  6. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  7. Girshick, R.: Fast R-CNN. In: Computer Science (2015)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Hu, X., Xu, X., Xiao, Y., Chen, H., Heng, P.A.: SINet: a scale-insensitive convolutional neural network for fast vehicle detection. IEEE Trans. Intell. Transp. Syst. 20(3), 1010–1019 (2019)

    Article  Google Scholar 

  11. Huang, L., Yi, Y., Deng, Y., Yu, Y.: DenseBox: unifying landmark localization with end to end object detection. In: Computer Science (2015)

    Google Scholar 

  12. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  13. Kong, T., Sun, F., Yao, A., Liu, H., Lu, M., Chen, Y.: RON: reverse connection with objectness prior networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5936–5944 (2017)

    Google Scholar 

  14. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints (2018)

    Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Belongie, S.: Feature pyramid networks for object detection (2016)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 2999–3007 (2017)

    Google Scholar 

  17. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2015)

    Google Scholar 

  19. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision & Pattern Recognition (2017)

    Google Scholar 

  20. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement (2018)

    Google Scholar 

  21. Ren, S., Girshick, R., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  22. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: IEEE 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016, pp. 761–769 (2016)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Computer Science (2014)

    Google Scholar 

  24. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection - snip

    Google Scholar 

  25. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  26. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module (2018)

    Google Scholar 

  27. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: UnitBox: an advanced object detection network (2016)

    Google Scholar 

  28. Zhao, Q., Sheng, T., Wang, Y., Tang, Z., Ling, H.: M2Det: a single-shot object detector based on multi-level feature pyramid network (2018)

    Google Scholar 

  29. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Q., Guo, N., Ye, X., Fan, D., Tang, Z. (2020). Pixel-Semantic Revising of Position: One-Stage Object Detector with Shared Encoder-Decoder. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics