Abstract
Scene text spotting is a challenging open problem in computer vision community. Many insightful methods have been proposed, but most of them did not consider the enormous computational burden for better performance. In this work, an extreme light scene text spotter is proposed with a teacher-student (TS) structure. Specifically, light convolutional neural network (CNN) architecture, Shuffle Unit, is adopted with feature pyramid network (FPN) for feature extraction. Knowledge distillation and attention transfer are designed in the TS framework to boost text detection accuracy. Cascaded with a full convolution network (FCN) recognizer, our proposed method can be trained end-to-end. Because the resource consumption is halved, our method runs faster. The experimental results demonstrate that our method is more efficient and can achieve state-of-the-art detection performance comparing with other methods on benchmark datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liao, M., Lyu, P., He, M., et al.: Mask textspotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Zhang, X., Zhou, X., Lin, M., et al.: ShuffleNET: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)
Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: Proceedings ICDAR, pp. 1156–1160 (2015)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. arXiv preprint arXiv:1801.04381 (2018)
Li, H., Wang, P., Shen, C.: Towards end-to-end text spotting with convolutional recurrent neural networks. In: Proceedings of IEEE International Conference on Computer Vision, pp. 5238–5246 (2017)
Ch’ng, C.K., Chan, C.S.: Total-text: a comprehensive dataset for scene text detection and recognition. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 935–942 (2017)
Busta, M, Neumann, L,, Matas, J.: Deep textspotter: an end-to-end trainable scene text localization and recognition framework. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2204–2212 (2017)
Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Lin, T.Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lyu, P., Liao, M., Yao, C., Wu, W., Bai, X.: Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 71–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_5
Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Gupta, A,, Vedaldi, A,, Zisserman, A.: Synthetic data for text localisation in natural images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2315–2324 (2016)
Zhang, Z., Zhang, C., Shen, W., Yao, C., Liu, W., Bai, X.: Multi-oriented text detection with fully convolutional networks. In: Proceedings of CVPR, pp. 4159–4167 (2016)
Shi, B., Bai, X., Belongie, S.J.: Detecting oriented text in natural images by linking segments. In: Proceedings of CVPR, pp. 3482–3490 (2017)
Zhou, X., et al.: EAST: an efficient and accurate scene text detector. In: Proceedings of CVPR, pp. 2642–2651 (2017)
Long, S., Ruan, J., Zhang, W., He, X., Wu, W., Yao, C.: TextSnake: a flexible representation for detecting text of arbitrary shapes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_2
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant 61703316.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Guan, J., Zhu, A. (2020). Light Textspotter: An Extreme Light Scene Text Spotter. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)