Abstract
Existing clustering ensemble selection methods adopt internal and external evaluation indexes to measure the quality and diversity of base clusterings. The significance of base clustering is quantified by the average or weighted average of multiple evaluation indexes. However, there exist two limitations in these methods. First, the evaluation of base clusterings in the form of linear combination of multiple indexes lacks the structural analysis and relative comparison between clusterings and measures. Second, the consistency between the final evaluation and the multiple evaluations from different measures cannot be guaranteed. To tackle these problems, we propose a clustering ensemble selection method with Analytic Hierarchy Process (AHPCES). Experimental results validate the effectiveness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asuncion, A., Newman, D.: UCI machine learning repository (2007)
Azimi, J., Fern, X.: Adaptive cluster ensemble selection. In: Twenty-First International Joint Conference on Artificial Intelligence, 9, pp. 992–997 (2009)
Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)
Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)
Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)
Fern, X.Z., Lin, W.: Cluster ensemble selection. Stat. Anal. Data Min. ASA Data Sci. J. 1(3), 128–141 (2008)
Fränti, P., Virmajoki, O.: Iterative shrinking method for clustering problems. Pattern Recogn. 39(5), 761–775 (2006)
Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of dna microarray data. BMC Bioinform. 8(1), 3 (2007)
Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. from Data (TKDD) 1(1), 4 (2007)
Iam-on, N., Garrett, S., et al.: Linkclue: a matlab package for link-based cluster ensembles. J. Stat. Softw. 36(9), 1–36 (2010)
Jain, A.K., Law, M.H.C.: Data clustering: a user’s dilemma. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Heidelberg (2005). https://doi.org/10.1007/11590316_1
Jia, J., Xiao, X., Liu, B., Jiao, L.: Bagging-based spectral clustering ensemble selection. Pattern Recogn. Lett. 32(10), 1456–1467 (2011)
Jie, Z., Zhihui, L., Duoqian, M., Can, G., Xiaodong, Y.: Multigranulation rough-fuzzy clustering based on shadowed sets. Inf. Sci. 507, 553–573 (2018)
Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J., Wu, S.: Understanding and enhancement of internal clustering validation measures. IEEE Trans. Cybern. 43(3), 982–994 (2013)
Saaty, T.L.: Decision-making with the ahp: why is the principal eigenvector necessary. Eur. J. Oper. Res. 145(1), 85–91 (2003)
Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3(Dec), 583–617 (2002)
Yue, X., Miao, D., Cao, L., Wu, Q., Chen, Y.: An efficient color quantization based on generic roughness measure. Pattern Recogn. 47(4), 1777–1789 (2014)
Zhao, X., Liang, J., Dang, C.: Clustering ensemble selection for categorical data based on internal validity indices. Pattern Recogn. 69, 150–168 (2017)
Zhong, C., Yue, X., Zhang, Z., Lei, J.: A clustering ensemble: two-level-refined co-association matrix with path-based transformation. Pattern Recogn. 48(8), 2699–2709 (2015)
Acknowledgment
This work was supported by National Natural Science Foundation of China (Nos. 61976134, 61991410, 61991415) and Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province (No. CICIP2018001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, W., Yue, X., Zhong, C., Zhou, J. (2020). Clustering Ensemble Selection with Analytic Hierarchy Process. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)