Clustering Ensemble Selection with Analytic Hierarchy Process | SpringerLink
Skip to main content

Clustering Ensemble Selection with Analytic Hierarchy Process

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

Abstract

Existing clustering ensemble selection methods adopt internal and external evaluation indexes to measure the quality and diversity of base clusterings. The significance of base clustering is quantified by the average or weighted average of multiple evaluation indexes. However, there exist two limitations in these methods. First, the evaluation of base clusterings in the form of linear combination of multiple indexes lacks the structural analysis and relative comparison between clusterings and measures. Second, the consistency between the final evaluation and the multiple evaluations from different measures cannot be guaranteed. To tackle these problems, we propose a clustering ensemble selection method with Analytic Hierarchy Process (AHPCES). Experimental results validate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  2. Azimi, J., Fern, X.: Adaptive cluster ensemble selection. In: Twenty-First International Joint Conference on Artificial Intelligence, 9, pp. 992–997 (2009)

    Google Scholar 

  3. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  4. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)

    Article  Google Scholar 

  5. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)

    Article  Google Scholar 

  6. Fern, X.Z., Lin, W.: Cluster ensemble selection. Stat. Anal. Data Min. ASA Data Sci. J. 1(3), 128–141 (2008)

    Article  MathSciNet  Google Scholar 

  7. Fränti, P., Virmajoki, O.: Iterative shrinking method for clustering problems. Pattern Recogn. 39(5), 761–775 (2006)

    Article  Google Scholar 

  8. Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of dna microarray data. BMC Bioinform. 8(1), 3 (2007)

    Article  Google Scholar 

  9. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. from Data (TKDD) 1(1), 4 (2007)

    Article  Google Scholar 

  10. Iam-on, N., Garrett, S., et al.: Linkclue: a matlab package for link-based cluster ensembles. J. Stat. Softw. 36(9), 1–36 (2010)

    Article  Google Scholar 

  11. Jain, A.K., Law, M.H.C.: Data clustering: a user’s dilemma. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Heidelberg (2005). https://doi.org/10.1007/11590316_1

    Chapter  Google Scholar 

  12. Jia, J., Xiao, X., Liu, B., Jiao, L.: Bagging-based spectral clustering ensemble selection. Pattern Recogn. Lett. 32(10), 1456–1467 (2011)

    Article  Google Scholar 

  13. Jie, Z., Zhihui, L., Duoqian, M., Can, G., Xiaodong, Y.: Multigranulation rough-fuzzy clustering based on shadowed sets. Inf. Sci. 507, 553–573 (2018)

    MathSciNet  Google Scholar 

  14. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J., Wu, S.: Understanding and enhancement of internal clustering validation measures. IEEE Trans. Cybern. 43(3), 982–994 (2013)

    Article  Google Scholar 

  15. Saaty, T.L.: Decision-making with the ahp: why is the principal eigenvector necessary. Eur. J. Oper. Res. 145(1), 85–91 (2003)

    Article  MathSciNet  Google Scholar 

  16. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3(Dec), 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Yue, X., Miao, D., Cao, L., Wu, Q., Chen, Y.: An efficient color quantization based on generic roughness measure. Pattern Recogn. 47(4), 1777–1789 (2014)

    Article  Google Scholar 

  18. Zhao, X., Liang, J., Dang, C.: Clustering ensemble selection for categorical data based on internal validity indices. Pattern Recogn. 69, 150–168 (2017)

    Article  Google Scholar 

  19. Zhong, C., Yue, X., Zhang, Z., Lei, J.: A clustering ensemble: two-level-refined co-association matrix with path-based transformation. Pattern Recogn. 48(8), 2699–2709 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (Nos. 61976134, 61991410, 61991415) and Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province (No. CICIP2018001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, W., Yue, X., Zhong, C., Zhou, J. (2020). Clustering Ensemble Selection with Analytic Hierarchy Process. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics