EMOTIONCAPS - Facial Emotion Recognition Using Capsules | SpringerLink
Skip to main content

EMOTIONCAPS - Facial Emotion Recognition Using Capsules

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

Abstract

Facial emotion recognition plays an important role in day-to-day activities. To address this, we propose a novel encoder/decoder network namely EmotionCaps, which models the facial images using matrix capsules, where hierarchical pose relationships between facial parts are built into internal representations. An optimal number of capsules and their dimension is chosen, as these hyper-parameters in the network play an important role to capture the complex facial pose relationship. Further, the batch normalization layer is introduced to expedite the convergence. To show the effectiveness of our network, EmotionCaps is evaluated for seven basic emotions in a wide range of head orientations. Additionally, our method is able to analyze facial images even in the presence of noise and blur quite accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abien Fred, M.A.: Deep learning using rectified linear units (ReLU). Neural Evol. Comput. 1, 7 p. (2018)

    Google Scholar 

  2. Arriaga, O., Valdenegro, M., Plöger, P.: Real-time convolutional neural networks for emotion and gender classification. In: ESANN, pp. 221–226 (2019)

    Google Scholar 

  3. Carrier, P.L., Courville, A., Goodfellow, I.J., Mirza, M., Bengio, Y.: Fer-2013 face database. Technical report (2013)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  5. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recogn. 36(1), 259–275 (2003)

    Article  Google Scholar 

  6. Hosseini, S., Cho, N.I.: Gf-CapsNet: Using Gabor jet and capsule networks for facial age, gender, and expression recognition. In: FG, pp. 1–8 (2019)

    Google Scholar 

  7. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, ICML 2015, vol. 37, pp. 448–456. JMLR.org (2015)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  9. Ko, B.C.: A brief review of facial emotion recognition based on visual information. Sensors 18(2), 401 (2018)

    Article  Google Scholar 

  10. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE TIP 11(4), 467–476 (2002)

    Google Scholar 

  11. Liu, P., Han, S., Meng, Z., Tong, Y.: Facial expression recognition via a boosted deep belief network. In: CVPR, pp. 1805–1812 (2014)

    Google Scholar 

  12. Lopes, A.T., de Aguiar, E., Souza, A.F.D., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recogn. 61, 610–628 (2017)

    Article  Google Scholar 

  13. Marrero Fernandez, P.D., Guerrero Pena, F.A., Ing Ren, T., Cunha, A.: FERAtt: facial expression recognition with attention net. In: CVPR Workshops, pp. 1–10 (2019)

    Google Scholar 

  14. Minaee, S., Abdolrashidi, A.: Deep-emotion: facial expression recognition using attentional convolutional network. CoRR abs/1902.01019 (2019)

    Google Scholar 

  15. Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression recognition using deep neural networks. In: WACV, pp. 1–10 (2016)

    Google Scholar 

  16. Pramerdorfer, C., Kampel, M.: Facial expression recognition using convolutional neural networks:state of the art. CoRR abs/1612.02903 (2016)

    Google Scholar 

  17. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: NIPS, pp. 3856–3866 (2017)

    Google Scholar 

  18. Tang, Y.: Deep learning using linear support vector machines. In: ICML, pp. 1–6 (2013)

    Google Scholar 

  19. Tariq, U., Yang, J., Huang, T.S.: Multi-view facial expression recognition analysis with generic sparse coding feature. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7585, pp. 578–588. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33885-4_58

    Chapter  Google Scholar 

  20. Viola, P., Jones, M., et al.: Rapid object detection using a boosted cascade of simple features. In: CVPR(1), vol. 1, no. 511–518, p. 3 (2001)

    Google Scholar 

  21. Yu, Z., Zhang, C.: Image based static facial expression recognition with multiple deep network learning. In: ICMI, ICMI 2015, pp. 435–442. ACM, New York (2015)

    Google Scholar 

  22. Zeng, N., Zhang, H., Song, B., Liu, W., Li, Y., Dobaie, A.M.: Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273, 643–649 (2018)

    Article  Google Scholar 

  23. Zhang, F., Zhang, T., Mao, Q., Xu, C.: Joint pose and expression modeling for facial expression recognition. In: CVPR, pp. 3359–3368 (2018)

    Google Scholar 

  24. Zhang, T., Zheng, W., Cui, Z., Zong, Y., Yan, J., Yan, K.: A deep neural network-driven feature learning method for multi-view facial expression recognition. IEEE Trans. Multimed. 18(12), 2528–2536 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srimanta Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shah, B., Bhatt, K., Mandal, S., Mitra, S.K. (2020). EMOTIONCAPS - Facial Emotion Recognition Using Capsules. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics