Efficient Segmentation Pyramid Network | SpringerLink
Skip to main content

Efficient Segmentation Pyramid Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

Abstract

Extensive growth in the field of robotics and autonomous industries, the demand for efficient image segmentation is increasing rapidly. Whilst existing methods have been shown to achieve outstanding results on challenging data sets, they cannot scale the model properly for real-world computational constraints applications due to a fixed large backbone network. We propose a novel architecture for semantic scene segmentation suitable for resource-constrained applications. Specifically, we make use of the global contextual prior by using a pyramid pooling technique on top of the backbone network. We also employ the recently proposed EfficientNet network to make our model efficiently scalable for computational constraints. We show that our newly proposed model - Efficient Segmentation Pyramid Network (ESPNet) - outperforms many existing scene segmentation models and produces 88.5% pixel accuracy on validation and 80.9% on training set of the Cityscapes benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. TPAMI 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. TPAMI 40(4), 834–848 (2017)

    Article  Google Scholar 

  3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of ICCV, September 2018

    Google Scholar 

  4. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of CVPR, June 2016

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. TPAMI 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, June 2016

    Google Scholar 

  7. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of CVPR, June 2018

    Google Scholar 

  9. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segnet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)

  10. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)

  11. Poudel, R.P., Bonde, U., Liwicki, S., Zach, C.: Contextnet: exploring context and detail for semantic segmentation in real-time. arXiv preprint arXiv:1805.04554 (2018)

  12. Poudel, R.P., Liwicki, S., Cipolla, R.: Fast-scnn: fast semantic segmentation network. arXiv preprint arXiv:1902.04502 (2019)

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of CVPR (June 2018)

    Google Scholar 

  15. Shang, Y., Zhong, S., Gong, S., Zhou, L., Ying, W.: DXNet: an encoder-decoder architecture with XSPP for semantic image segmentation in street scenes. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1143, pp. 550–557. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36802-9_59

    Chapter  Google Scholar 

  16. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. TPAMI 39(4), 640–651 (2017)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  19. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: generalizing residual architectures. arXiv preprint arXiv:1603.08029 (2016)

  20. Yang, M., Shi, Y.: DSMRSeg: dual-stage feature pyramid and multi-range context aggregation for real-time semantic Segmentation. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1142, pp. 265–273. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36808-1_29

    Chapter  Google Scholar 

  21. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. In: Proceedings of ECCV, September 2018

    Google Scholar 

  22. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of CVPR, July 2017

    Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Pawsey supercomputing centre for providing J. Dunstan the internship during which part of the work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmay Singha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singha, T., Pham, DS., Krishna, A., Dunstan, J. (2020). Efficient Segmentation Pyramid Network. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics