Adaptive Feature Enhancement Network for Semantic Segmentation | SpringerLink
Skip to main content

Adaptive Feature Enhancement Network for Semantic Segmentation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

  • 2566 Accesses

Abstract

Semantic segmentation is a fundamental and challenging problem in computer vision. Recent studies attempt to integrate feature information of different depths to improve the performance of segmentation tasks, and a few of them enhance the features before fusion. However, which areas of the feature should be strengthened and how to strengthen are still inconclusive. Therefore, in this work we propose an Adaptive Feature Enhancement Module (AFEM) that utilizes high-level features to adaptively enhance the key areas of low-level features. Meanwhile, an Adaptive Feature Enhancement Network (AFENet) is designed with AFEM to combine all the enhanced features. The proposed method is validated on representative semantic segmentation datasets, Cityscapes and PASCAL VOC 2012. In particular, 79.5% mIoU on the Cityscapes testing set is achieved without using fine-val data, which is 1.1% higher than the baseline network and the model size is smaller. The code of AFENet is available at https://github.com/KTMomo/AFENet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR 2015 (2015)

    Google Scholar 

  2. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  3. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR abs/1706.05587 (2017)

    Google Scholar 

  4. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. CVPR 2016, 3213–3223 (2016)

    Google Scholar 

  6. Ding, H., Jiang, X., Shuai, B., Liu, A.Q., Wang, G.: Context contrasted feature and gated multi-scale aggregation for scene segmentation. CVPR 2018, 2393–2402 (2018)

    Google Scholar 

  7. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  8. Hariharan, B., Arbelaez, P., Bourdev, L.D., Maji, S., Malik, J.: Semantic contours from inverse detectors. ICCV 2011, 991–998 (2011)

    Google Scholar 

  9. Ke, T.-W., Hwang, J.-J., Liu, Z., Yu, S.X.: Adaptive affinity fields for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 605–621. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_36

    Chapter  Google Scholar 

  10. Kong, S., Fowlkes, C.C.: Recurrent scene parsing with perspective understanding in the loop. CVPR 2018, 956–965 (2018)

    Google Scholar 

  11. Li, H., Xiong, P., An, J., Wang, L.: Pyramid attention network for semantic segmentation. In: BMVC 2018, p. 285 (2018)

    Google Scholar 

  12. Lin, D., Ji, Y., Lischinski, D., Cohen-Or, D., Huang, H.: Multi-scale context intertwining for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 622–638. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_37

    Chapter  Google Scholar 

  13. Lin, G., Milan, A., Shen, C., Reid, I.D.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. CVPR 2017, 5168–5177 (2017)

    Google Scholar 

  14. Lin, G., Shen, C., van den Hengel, A., Reid, I.D.: Efficient piecewise training of deep structured models for semantic segmentation. CVPR 2016, 3194–3203 (2016)

    Google Scholar 

  15. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CVPR 2017, 936–944 (2017)

    Google Scholar 

  16. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. ICCV 2015, 1377–1385 (2015)

    Google Scholar 

  17. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. ICCV 2015, 1520–1528 (2015)

    Google Scholar 

  18. Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. CVPR 2017, 3309–3318 (2017)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. NIPS 2017, 5998–6008 (2017)

    Google Scholar 

  22. Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. CVPR 2018, 3684–3692 (2018)

    Google Scholar 

  23. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20

    Chapter  Google Scholar 

  24. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a discriminative feature network for semantic segmentation. CVPR 2018, 1857–1866 (2018)

    Google Scholar 

  25. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR 2016 (2016)

    Google Scholar 

  26. Zhang, R., Tang, S., Zhang, Y., Li, J., Yan, S.: Scale-adaptive convolutions for scene parsing. ICCV 2017, 2050–2058 (2017)

    Google Scholar 

  27. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. CVPR 2017, 6230–6239 (2017)

    Google Scholar 

  28. Zhao, H., et al.: PSANet: point-wise spatial attention network for scene parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 270–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_17

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by Major Scientific and Technological Special Project of Guizhou Province (No. 20183002) and Sichuan Science and Technology Program (No. 2019YFG0535).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, K., Huang, X., Shao, J. (2020). Adaptive Feature Enhancement Network for Semantic Segmentation. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics