Abstract
The exponential rise in software systems and allied applications has alarmed industries and professionals to ensure high quality with optimal reliability, maintainability etc. On contrary software companies focus on developing software solutions at the reduced cost corresponding to the customer demands. Thus, maintaining optimal software quality at reduced cost has always been the challenge for developers. On the other hand, inappropriate code design often leads aging, smells or bugs which can harm eventual intend of the software systems. However, identifying a smell signifier or structural attribute characterizing refactoring probability in software has been the challenge. To alleviate such problems, in this research code-metrics structural feature identification and Neural Network based refactoring prediction model is developed. Our proposed refactoring prediction system at first extracts a set of software code metrics from object-oriented software systems, which are then processed for feature selection method to choose an appropriate sample set of features using Wilcoxon rank test. Once obtaining the optimal set of code-metrics, a novel ANN classifier using 5 different hidden layers is implemented on 5 open source java projects with 3 data sampling techniques SMOTE, BLSMOTE, SVSMOTE to handle class imbalance problem. The performance of our proposed model achieves optimal classification accuracy, F-measure and then it has been shown through AUC graph as well as box-plot diagram.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng. 30(2), 126–139 (2004)
Ibrahim, R., Ahmed, M., Nayak, R., Jamel, S.: Reducing redundancy of test cases generation using code smell detection and refactoring. Journal of King Saud University-Computer and Information Sciences, 32(3), pp. 367–374 2018
Kumar, L., Sureka, A.: Application of lssvm and smote on seven open source projects for predicting refactoring at class level. In: 2017 24th Asia-Pacific Software Engineering Conference (APSEC), pp. 90–99. IEEE (2017)
Kádár, I., Hegedus, P., Ferenc, R., Gyimóthy, T.: A code refactoring dataset and its assessment regarding software maintainability. In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), 1, pp. 599–603. IEEE (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Panigrahi, R., Kumar, L., Kuanar, S.K. (2020). An Empirical Study to Investigate Different SMOTE Data Sampling Techniques for Improving Software Refactoring Prediction. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)