Abstract
Anger is an important emotion in social interactions. People can be angry from the feeling, or by acting, with an aim to turn situations to their advantage. With advances in affective computing, machine learning based approaches make it possible to identify veracity of anger through physiological signals of observers. In this paper, we examine time-series pupillary responses of observers viewing genuine and acted anger stimuli. A Fully-Connected Neural Network (FCNN) and an Long-Short Term Memory (LSTM) are trained using pre-processed pupillary responses to classify genuine anger and acted anger expressed from the stimuli. We also adopt the Bimodal Distribution Removal (BDR) technique to remove noise from the dataset. We find that both FCNN and LSTM can recognise veracity of anger with an accuracy of \(79.7\%\) and \(89.7\%\) respectively. The use of BDR is beneficial in providing an early stopping for LSTM to avoid overfitting and improve efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, L., Gedeon, T., Hossain, Md.Z., Caldwell, S.: Are you really angry? Detecting emotion veracity as a proposed tool for interaction. In: Proceedings of the 29th Australian Conference on Computer-Human Interaction, OZCHI 2017, pp. 412–416. Association for Computing Machinery, New York (2017)
Ellis, A.: Anger: How to Live with and Without It. Hachette, UK (2019)
Hossain, Md.Z., Gedeon, T.: Classifying posed and real smiles from observers’ peripheral physiology. In: Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2017, pp. 460–463. Association for Computing Machinery, New York (2017)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Kim, C.J., Chang, M.: Actual emotion and false emotion classification by physiological signal. In: 2015 8th International Conference on Signal Processing, Image Processing and Pattern Recognition (SIP), pp. 21–24 (2015)
Kim, J., André, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2067–2083 (2008)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kline, M., Berardi, L.: Revisiting squared-error and cross-entropy functions for training neural network classifiers. Neural Comput. Appl. 14(4), 310–318 (2005)
Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation 5, 532–538 (2009)
Santamaria-Granados, L., Munoz-Organero, M., Ramirez-González, G., Abdulhay, E., Arunkumar, N.: Using deep convolutional neural network for emotion detection on a physiological signals dataset (amigos). IEEE Access 7, 57–67 (2019)
Slade, P., Gedeon, T.D.: Bimodal distribution removal. In: Mira, J., Cabestany, J., Prieto, A. (eds.) IWANN 1993. LNCS, vol. 686, pp. 249–254. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56798-4_155
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jin, R., Zhu, X., Fu, YS. (2020). Identifying Anger Veracity Using Neural Network and Long-Short Term Memory with Bimodal Distribution Removal. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-63820-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63819-1
Online ISBN: 978-3-030-63820-7
eBook Packages: Computer ScienceComputer Science (R0)