A Landmark Estimation and Correction Network for Automated Measurement of Sagittal Spinal Parameters | SpringerLink
Skip to main content

A Landmark Estimation and Correction Network for Automated Measurement of Sagittal Spinal Parameters

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Included in the following conference series:

Abstract

Recently, deep learning for spinal measurement in scoliosis achieved huge success. However, we notice that existing methods suffer low performance on lateral X-rays because of severe occlusion. In this paper, we propose the automated Landmark Estimation and Correction Network (LEC-Net) based on a convolutional neural network (CNN) to estimate landmarks on lateral X-rays. The framework consists of two parts (1) a landmark estimation network (LEN) and (2) a landmark correction network (LCN). The LEN first estimates 68 landmarks of 17 vertebrae (12 thoracic vertebrae and 5 lumbar vertebrae) per image. These landmarks may include some failed points on the area with occlusion. Then the LCN estimates the clinical parameters by considering the spinal curvature described by 68 landmarks as a constraint. Extensive experiment results which test on 240 lateral X-rays demonstrate that our method improves the landmark estimation accuracy and achieves high performance of clinical parameters on X-rays with severe occlusion. Implementation code is available at https://github.com/xiaoyanermiemie/LEN-LCN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://spineweb.digitalimaginggroup.ca/, Dataset 16.

References

  1. Al Okashi, O., Du, H., Al-Assam, H.: Automatic spine curvature estimation from X-ray images of a mouse model. Comput. Methods Programs Biomed. 140, 175–184 (2017)

    Article  Google Scholar 

  2. Cho, B.H., et al.: Automated measurement of lumbar lordosis on radiographs using machine learning and computer vision. Glob. Spine J. 10, 611–618 (2019)

    Article  Google Scholar 

  3. Cobb, J.: Outline for the study of scoliosis. Instr. Course Lect. AAOS 5, 261–275 (1948)

    Google Scholar 

  4. Galbusera, F., et al.: Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur. Spine J. 28(5), 951–960 (2019). https://doi.org/10.1007/s00586-019-05944-z

    Article  Google Scholar 

  5. Harrison, D.E., Harrison, D.D., Cailliet, R., Troyanovich, S.J., Janik, T.J., Holland, B.: Cobb method or Harrison posterior tangent method: which to choose for lateral cervical radiographic analysis. Spine 25(16), 2072–2078 (2000)

    Article  Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision & Pattern Recognition (2016)

    Google Scholar 

  8. Horng, M.H., Kuok, C.P., Fu, M.J., Lin, C.J., Sun, Y.N.: Cobb angle measurement of spine from X-ray images using convolutional neural network. Comput. Math. Methods Med. (2019)

    Google Scholar 

  9. Konieczny, M.R., Senyurt, H., Krauspe, R.: Epidemiology of adolescent idiopathic scoliosis. J. Child. Orthop. 7(1), 3–9 (2012). https://doi.org/10.1007/s11832-012-0457-4

    Article  Google Scholar 

  10. Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. In: Advances in Neural Information Processing Systems, pp. 9605–9616 (2018)

    Google Scholar 

  11. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  12. Pan, Y., et al.: Evaluation of a computer-aided method for measuring the cobb angle on chest X-rays. Eur. Spine J. 28(12), 3035–3043 (2019)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Sun, H., Zhen, X., Bailey, C., Rasoulinejad, P., Yin, Y., Li, S.: Direct estimation of spinal cobb angles by structured multi-output regression. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 529–540. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_42

    Chapter  Google Scholar 

  15. Tu, Y., Wang, N., Tong, F., Chen, H.: Automatic measurement algorithm of scoliosis cobb angle based on deep learning. In: Journal of Physics: Conference Series, vol. 1187. IOP Publishing (2019)

    Google Scholar 

  16. Wang, L., Xu, Q., Leung, S., Chung, J., Chen, B., Li, S.: Accurate automated cobb angles estimation using multi-view extrapolation net. Med. Image Anal. 58 (2019)

    Google Scholar 

  17. Wu, H., Bailey, C., Rasoulinejad, P., Li, S.: Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 127–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_15

    Chapter  Google Scholar 

  18. Wu, H., Bailey, C., Rasoulinejad, P., Li, S.: Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med. Image Anal. 48, 1–11 (2018)

    Article  Google Scholar 

  19. Zhang, K., Xu, N., Yang, G., Wu, J., Fu, X.: An automated cobb angle estimation method using convolutional neural network with area limitation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 775–783. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_86

    Chapter  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key Research and Development Program of China (No.2018YFC0116800), by Beijing Municipal Natural Science Foundation (No. L192026), by the Young Scientists Fund of the National Natural Science Foundation of China (No.2019NSFC81901822) and by the Peking University Fund of Fostering Young Scholars’ Scientific & Technological Innovation (No. BMU2018PYB016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangling Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, G., Fu, X., Xu, N., Zhang, K., Wu, J. (2020). A Landmark Estimation and Correction Network for Automated Measurement of Sagittal Spinal Parameters. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics