Candidates Reduction and Enhanced Sub-Sequence-Based Dynamic Time Warping: A Hybrid Approach | SpringerLink
Skip to main content

Candidates Reduction and Enhanced Sub-Sequence-Based Dynamic Time Warping: A Hybrid Approach

  • Conference paper
  • First Online:
Artificial Intelligence XXXVII (SGAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12498))

  • 785 Accesses

Abstract

Dynamic Time Warping (DTW) coupled with k Nearest Neighbour classification, where \(k=1\), is the most common classification algorithm in time series analysis. The fact that the complexity of DTW is quadratic, and therefore computationally expensive, is a disadvantage; although DTW has been shown to be more accurate than other distance measures such as Euclidean distance. This paper presents a hybrid, Euclidean and DTW time series analysis similarity metric approach to improve the performance of DTW coupled with a candidate reduction mechanism. The proposed approach results in better performance than alternative enhanced Sub-Sequence-Based DTW approaches, and the standard DTW algorithm, in terms of runtime, accuracy and F1 score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alshehri, M., Coenen, F., Dures, K.: Effective sub-sequence-based dynamic time warping. In: Bramer, M., Petridis, M. (eds.) SGAI 2019. LNCS (LNAI), vol. 11927, pp. 293–305. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34885-4_23

    Chapter  Google Scholar 

  2. Alshehri, M., Coenen, F., Dures, K.: Sub-sequence-based dynamic time warping. In: KDIR, pp. 274–281 (2019)

    Google Scholar 

  3. Bagnall, A., Lines, J.: An experimental evaluation of nearest neighbour time series classification. arXiv preprint arXiv:1406.4757 (2014)

  4. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2017). https://doi.org/10.1007/s10618-016-0483-9

    Article  MathSciNet  Google Scholar 

  5. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string problems and dynamic time warping. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 79–97. IEEE (2015)

    Google Scholar 

  6. Brunello, A., Marzano, E., Montanari, A., Sciavicco, G.: A novel decision tree approach for the handling of time series. In: Groza, A., Prasath, R. (eds.) MIKE 2018. LNCS (LNAI), vol. 11308, pp. 351–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05918-7_32

    Chapter  Google Scholar 

  7. Gamboa, J.C.B.: Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887 (2017)

  8. Huang, S.F., Guo, M., Chen, M.R.: Stock market trend prediction using a functional time series approach. Quant. Financ. 20(1), 69–79 (2020)

    Article  MathSciNet  Google Scholar 

  9. Itakura, F.: Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. 23(1), 67–72 (1975)

    Article  Google Scholar 

  10. Kocian, A., Chessa, S.: Auto regressive integrated moving average modeling and support vector machine classification of financial time series. In: Bucciarelli, E., Chen, S.-H., Corchado, J.M. (eds.) DCAI 2018. AISC, vol. 805, pp. 1–8. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99698-1_1

    Chapter  Google Scholar 

  11. Kulkarni, N.: Effect of dynamic time warping using different distance measures on time series classification. Int. J. Comput. Appl. 975, 8887 (2017)

    Google Scholar 

  12. Liu, Z., Jiang, P., Zhang, L., Niu, X.: A combined forecasting model for time series: application to short-term wind speed forecasting. Appl. Energy 259, 114137 (2020)

    Article  Google Scholar 

  13. Niennattrakul, V., Ratanamahatana, C.A.: Learning dtw global constraint for time series classification. arXiv preprint arXiv:0903.0041 (2009)

  14. Rakthanmanon, T., et al.: Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 262–270. ACM (2012)

    Google Scholar 

  15. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  Google Scholar 

  16. Silva, D.F., Giusti, R., Keogh, E., Batista, G.E.: Speeding up similarity search under dynamic time warping by pruning unpromising alignments. Data Min. Knowl. Disc. 32, 1–29 (2018). https://doi.org/10.1007/s10618-018-0557-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Tan, C.W., Herrmann, M., Forestier, G., Webb, G.I., Petitjean, F.: Efficient search of the best warping window for dynamic time warping. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 225–233. SIAM (2018)

    Google Scholar 

  18. Zhou, M., Wong, M.H.: Boundary-based lower-bound functions for dynamic time warping and their indexing. Inf. Sci. 181(19), 4175–4196 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Alshehri , Frans Coenen or Keith Dures .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alshehri, M., Coenen, F., Dures, K. (2020). Candidates Reduction and Enhanced Sub-Sequence-Based Dynamic Time Warping: A Hybrid Approach. In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVII. SGAI 2020. Lecture Notes in Computer Science(), vol 12498. Springer, Cham. https://doi.org/10.1007/978-3-030-63799-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63799-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63798-9

  • Online ISBN: 978-3-030-63799-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics