Abstract
Recommender system has a vital role in everyday life with newer advancement. Location based recommender system is the current trend involved in mobile devices by providing the user with their timely needs in an effective and efficient manner. The services provided by the location based recommender system are Geo-tagged data based services containing the Global Positioning System and sensors incorporated to accumulate user information. Bayesian network model is widely used in geo-tagged based services to provide solution to the cold start problem. Point Location based services considers user check-in and auxiliary information to provide recommendation. Regional based recommendation can be considered for improving accuracy in this Point location based service. Trajectory based services uses the travel paths of the user and finds place of interest along with the similar user behaviours. Context based information can be incorporated with these services to provide better recommendation. Thus this article provides an overview of the Geo-tagged media based services and Point Location based services and discusses about the possible research issues and future work that can be implemented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tiwari, S., Kaushik, S., Jagwani, P.: Location based recommender systems: architecture, trends and research areas. In: IET International Conference on Wireless Communications and Applications (ICWCA 2012), pp. 1–8. IET (2012). https://doi.org/10.1049/cp.2012.2096
Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.: Recommendations in location-based social networks: a survey. GeoInformatica 19(3), 525–565 (2015). https://doi.org/10.1007/s10707-014-0220-8
Park, M., Hong, J., Cho, S.: Location-based recommendation system using Bayesian User’ s preference model in mobile devices. Expert Syst. Appl. 39(11), 1130–1139 (2012). https://doi.org/10.1016/j.eswa.2012.02.038
Logesh, R., Subramaniyaswamy, V., Vijayakumar, V., Li, X.: Efficient user profiling based intelligent travel recommender system for individual and group of users. Mob. Netw. Appl. 24(3), 1018–1033 (2018). https://doi.org/10.1007/s11036-018-1059-2
Lu, X., Wang, C., Yang, J., Pang, Y., Zhang, L.: Photo2Trip : generating travel routes from geo-tagged photos for trip planning. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 143–152. (2010). https://doi.org/10.1145/1873951.1873972
Zheng, Y., Zhang, L., Xie, X., Ma, W.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web, pp. 791–800 (2009). https://doi.org/10.1145/1526709.1526816
Majid, A., Chen, L., Chen, G., Mirza, H.T., Hussain, I., Woodward, J.: A context-aware personalized travel recommendation system based on geotagged social media data mining. Int. J. Geogr. Inf. Sci. 37–41 (2012). https://doi.org/10.1080/13658816.2012.696649
Chon, Y., Cha, H.: LifeMap: a smartphone-based context provider for location-based services. IEEE Perv. Comput. 10(2), 58–67 (2011). https://doi.org/10.1109/mprv.2011.13
Rehman, F., Khalid, O., Madani, S.: A comparative study of location based recommendation systems. Knowl. Eng. Rev. 31, 1–30 (2017). https://doi.org/10.1017/S0269888916000308
Zhang, C., Liu, L., Lei, D., Zhuang, H., Hanra, T., Han, J.: TrioVecEvent: embedding-based online local event detection in geo-tagged tweet streams. Knowl. Data Discov. 595–605 (2017). https://doi.org/10.1145/3097983.3098027
Yang, L., Wu, L., Liu, Y., Kang, C.: Quantifying tourist behavior patterns by travel motifs and geo-tagged photos from Flickr. SPRS Int. J. Geo-Informatica 6(11), 1–18 (2017). Article number 345. https://doi.org/10.3390/ijgi6110345
Sun, X., Huang, Z., Peng, X., Chen, Y., Liu, Y.: Building a model-based personalised recommendation approach for tourist attractions from geotagged social media data. Int. J. Digit. Earth 1–18 (2018). https://doi.org/10.1080/17538947.2018.1471104
Bujari, A., Ciman, M., Gaggi, O., Palazzi, C.E.: Using gamification to discover cultural heritage locations from geo-tagged photos. Pers. Ubiquit. Comput. 21(2), 235–252 (2017). https://doi.org/10.1007/s00779-016-0989-6
Cai, G., Lee, K., Lee, I.: Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos. Expert Syst. Appl. 94, 32–40 (2017). https://doi.org/10.1016/j.eswa.2017.10.049
Mor, M., Dalyot, S.: Computing touristic walking routes using geotagged photographs from Flickr. ETH Zurich Research Collection, pp. 1–7 (2018). https://doi.org/10.3929/ethz-b-000225591
Wu, X., Huang, Z., Peng, X.I.A., Chen, Y.: Building a spatially-embedded network of tourism hotspots from geotagged social media data. Cyber-Phys.-Soc. Comput. Netw. 6, 21945–21955 (2018). https://doi.org/10.1109/ACCESS.2018.2828032
Barros, C., Moya-Gómez, B., Gutiérrez, J.: Using geotagged photographs and GPS tracks from social networks to analyse visitor behaviour in national parks. Curr. Issues Tour. 1–20 (2019). https://doi.org/10.1080/13683500.2019.1619674
Sun, X., Huang, Z., Peng, X., Chen, Y., Liu, Y.: Building a model-based personalised recommendation approach for tourist attractions from geotagged social media data. Int. J. Digit. Earth 12(6), 661–678 (2019). https://doi.org/10.1080/17538947.2018.1471104
Wang, H., Ouyang, W., Shen, H., Cheng, X.: ULE: learning user and location embeddings for POI recommendation. In: Proceedings of 2018 IEEE 3rd International Conference on Data Science Cyberspace, DSC 2018, pp. 99–106 (2018). https://doi.org/10.1109/dsc.2018.00023
Sarwat, M., Levandoski, J.J., Eldawy, A., Mokbel, M.F.: LARS*: an efficient and scalable location-aware recommender system. IEEE Trans. Knowl. Data Eng. 26(6), 1384–1399 (2014). https://doi.org/10.1109/TKDE.2013.29
Zheng, V.W., Zheng, Y., Xie, X., Yang, Q.: Towards mobile intelligence: learning from GPS history data for collaborative recommendation. Artif. Intell. 184–185, 17–37 (2012). https://doi.org/10.1016/j.artint.2012.02.002
Wang, H., Ouyang, W., Shen, H., Cheng, X.: ULE : learning user and location embeddings for POI recommendation. In: 2018 IEEE Third International Conference on Data Science Cyberspace, pp. 99–106 (2018). https://doi.org/10.1109/dsc.2018.00023
Ding, R., Chen, Z.: RecNet: a deep neural network for personalized POI recommendation in location-based social networks. Int. J. Geogr. Inf. Sci. 32(8), 1–18 (2018). https://doi.org/10.1080/13658816.2018.1447671
Guoqiong, L., Zhou, Z., Changxuan, W., Xiping, L.: POI recommendation of location-based social networks using tensor factorization. In: 2018 19th IEEE International Conference on Mobile Data Management, pp. 116–124 (2018). http://doi.ieeecomputersociety.org/10.1109/MDM.2018.00028
Baral, R., Zhu, X., Iyengar, S.S., Li, T.: ReEL : review aware explanation of location recommendation. In: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, pp. 23–32 (2013). https://doi.org/10.1145/2509230.2509237
Gao, R., et al.: Exploiting geo-social correlations to improve pairwise ranking for point-of-interest recommendation. China Commun. 15(7), 180–201 (2018). https://doi.org/10.1109/cc.2018.8424613
Zhang, S., Cheng, H.: Exploiting context graph attention for POI recommendation in location-based social networks. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10827, pp. 83–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91452-7_6
Zhu, Q., et al.: Context-aware group recommendation for point-of-interests. IEEE Access 6, 12129–12144 (2018). https://doi.org/10.1109/ACCESS.2018.2805701
Jiao, X., Xiao, Y., Zheng, W., Wang, H., Hsu, C.H.: A novel next new point-of-interest recommendation system based on simulated user travel decision-making process. Futur. Gener. Comput. Syst. 100, 982–993 (2019). https://doi.org/10.1016/j.future.2019.05.065
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 IFIP International Federation for Information Processing
About this paper
Cite this paper
Sujithra @ Kanmani, R., Surendiran, B. (2020). Location Based Recommender Systems (LBRS) – A Review. In: Chandrabose, A., Furbach, U., Ghosh, A., Kumar M., A. (eds) Computational Intelligence in Data Science. ICCIDS 2020. IFIP Advances in Information and Communication Technology, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-030-63467-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-63467-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63466-7
Online ISBN: 978-3-030-63467-4
eBook Packages: Computer ScienceComputer Science (R0)