Abstract
Autonomous vehicles use road images to detect roads, identify lanes, objects around the vehicle and other important pieces of information. This information retrieved from the road data helps in making appropriate driving decisions for autonomous vehicles. Road segmentation is such a technique that segments the road from the image. Many deep learning networks developed for semantic segmentation can be fine-tuned for road segmentation. The paper presents details of the segmentation of the driveable area from the road image using a semantic segmentation network. The semantic segmentation network used segments road into the driveable and alternate area separately. Driveable area and alternately driveable area on a road are semantically different, but it is a difficult computer vision task to differentiate between them since they are similar in texture, color, and other important features. However, due to the development of advanced Deep Convolutional Neural Networks and road datasets, the differentiation was possible. A result achieved in detecting the driveable area using a semantic segmentation network, DeepLab, on the Berkley Deep Drive dataset is reported.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Levinson, J., et al.: Towards fully autonomous driving: systems and algorithms. In: IEEE Intelligent Vehicles Symposium (IV). IEEE (2011)
Kim, J., Park, C.: End-to-end ego lane estimation based on sequential transfer learning for self-driving cars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017)
Ohn-Bar, E., Trivedi, M.M.: Are all objects equal? Deep spatio-temporal importance prediction in driving videos. Pattern Recogn. 64, 425–436 (2017)
Yu, F., et al.: BDD100K- a diverse driving video database with scalable annotation tooling. arXiv (2018)
Máttyus, G., Wang, S., Fidler, S., Urtasun, R.: HD maps: fine-grained road segmentation by parsing ground and aerial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3611–3619 (2016)
Caltagirone, L., Bellone, M., Svensson, L., Wahde, M.: LIDAR–camera fusion for road detection using fully convolutional neural networks. Robot. Auton. Syst. 111, 25–31 (2019)
Yang, X., Li, X., Ye, Y., Lau, R.Y., Zhang, X., Huang, X.: Road detection and centerline extraction via deep recurrent convolutional neural network U-Net. IEEE Trans. Geosci. Remote Sens. 57(9), 7209–7220 (2019)
Xiao, L., Wang, R., Dai, B., Fang, Y., Liu, D., Wu, T.: Hybrid conditional random field based camera-LIDAR fusion for road detection. Inf. Sci. 432, 543–558 (2018)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, 1520–1528 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, 580–587 (2014)
Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet - multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1925–1934 (2017)
Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic segmentation using adversarial networks. arXiv preprint arXiv:1611.08408 (2016)
Wang, P., et al.: Understanding convolution for semantic segmentation. In: IEEE Winter Conference on Applications of Computer Vision, pp. 1451–1460 (2018)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)
Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S.: Revisiting dilated convolution: a simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7268–7277. (2018)
Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNET for real-time semantic segmentation on high-resolution images. In: Proceedings of the European Conference on Computer Vision, pp. 405–420 (2018)
Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)
Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q, Yang, R.: The apolloscape open dataset for autonomous driving and its application. arXiv preprint arXiv:1803.06184 (2018)
Maddern, W., et al.: 1 year, 1000 km - the Oxford robot car dataset. Int. J. Robot. Res. 36(1), 3–15 (2017)
Chen, L.-C., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv preprint arXiv:1610–02357 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 IFIP International Federation for Information Processing
About this paper
Cite this paper
Subhasree, P., Karthikeyan, P., Senthilnathan, R. (2020). Driveable Area Detection Using Semantic Segmentation Deep Neural Network. In: Chandrabose, A., Furbach, U., Ghosh, A., Kumar M., A. (eds) Computational Intelligence in Data Science. ICCIDS 2020. IFIP Advances in Information and Communication Technology, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-030-63467-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-63467-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63466-7
Online ISBN: 978-3-030-63467-4
eBook Packages: Computer ScienceComputer Science (R0)