Abstract
This paper is based on the recognition of faces using string matching. The approximate string matching is a method for finding an approximate match of a pattern within a string. Exact matching is impracticable for a larger amount of data as it involves more time. Those issues can be solved by finding an approximate match rather than an exact match. This paper aims to experiment with the performance of approximation string matching approaches using various distance measures such as Edit distance, Longest Common Subsequence (LCSS), Hamming distance, Jaro distance, and Jaro-Winkler distance. The algorithms generate a near-optimal solution to face recognition system with reduced computational complexity. This paper deals with the conversion of face images into strings, matching those image strings by using the approximation string matching algorithm that determines the distance and classifies a face image based on the minimum distance. Experiments have been performed with FEI and ORL face databases for the evaluation of approximation string matching algorithms and the results demonstrate the utility of distance measures for the face recognition system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.: Face recognition: a literature survey. ACM Comput. Surv. 35, 399–458 (2003)
Kirby, M., Sirovich, L.: Application of the Karhunen-Loève procedure for the characterization of the human face. IEEE Trans. Pattern Anal. Mach. Intell. 12, 103–108 (1990)
Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of the IEEE Conference on CVPR, pp. 586–591 (1991)
Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognit. 34, 2067–2070 (2001)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fishy faces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)
Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13, 1450–1464 (2002)
Miar-Naimi, H., Davari, P.: A new fast and efficient HMM-based face recognition system using a 7-state HMM along with SVD coefficients. Iran. J. Electr. Electron. Eng. 4 (2008)
Geng, X., Zhou, Z., Smith-Miles, K.: Individual stable space: an approach to face recognition under uncontrolled conditions. IEEE Trans. Neural Netw. 19(8), 1354–1368 (2008)
Gaston, J., Ming, J., Crookes, D.: Matching larger image areas for unconstrained face identification. IEEE Trans. Cybern. 49(8), 3191–3202 (2019)
Qiangchang, W., Guodong, G.: LS-CNN: characterizing local patches at multiple scales for face recognition. IEEE Trans. Inf. Forensics Secur. 15, 1640–1652 (2020)
Alhendawi, K.M.A., Baharudin, S.: String matching algorithms (SMAs): survey & empirical analysis. J. Comput. Sci. Manag. 2(5), 2637–2644 (2013)
Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)
Ukkonen, E.: Algorithms for approximate string matching. Inf. Control 64(1–3), 100–118 (1985)
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, 1 edn. Cambridge University Press, Cambridge (2011)
Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)
Hamming, R.W.: Error detecting and error-correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)
Jaro, M. A.: Advances in record linkage methodology as applied to the 1985 census of Tampa Florida. J. Am. Stat. Assoc. 84(406), 414–420 (1989)
Winkler, W.E.: Overview of record linkage and current research directions (PDF). Research Report Series, RRS (2006)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
Zhou, Z., Wagner, A., Mobahi, H., Wright, J., Ma, Y.: Face recognition with contiguous occlusion using Markov random fields. In: IEEE International Conference Computer Vision (ICCV), pp. 1050–1057, October 2009
He, R., Zheng, W.S., Tan, T., Sun, Z.: Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 261–275 (2014)
Peng, Y., Li, L., Liu, S., Li, J., Cao, H.: Virtual samples and sparse representation based classification algorithm for face recognition. IET Comput. Vis. 13(2), 172–177 (2018)
Fritz, K., Damiana, L., Serena, M.: A robust group sparse representation variational method with applications to face recognition. IEEE Trans. Image Process. 28(6), 2785–2798 (2019)
Weng, R., Lu, J., Hu, J., Yang, G., Tan, Y.P.: Robust feature set matching for partial face recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 601–608, December 2013
Wei, X., Li, C.-T., Lei, Z., Yi, D., Li, S.Z.: Dynamic image-to-class warping for occluded face recognition. IEEE Trans. Inf. Forensics Secur. 9(12), 2035–2050 (2014)
Chen, W., Gao, Y.: Face Recognition Using Ensemble String Matching. IEEE Trans. Image Process. 22(12), 4798–4808 (2013)
Gao, Y., Leung, M.K.H.: Human face profile recognition using attributed string. Pattern Recognit. 35(2), 353–360 (2002)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2013)
Mehdipour Ghazi, M., Kemal Ekenel, H.: A comprehensive analysis of deep learning-based representation for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 34–41 (2016)
Lu, J., Wang, G., Zhou, J.: Simultaneous feature and dictionary learning for image set based face recognition. IEEE Trans. Image Process. 26, 4042–4054 (2017)
Hu, G, Peng, X.Y., Hospedales, Y., Verbeek, T.M., Frankenstein, J.: Learning deep face representations using small data. IEEE Trans. Image Process. 27, 293–303 (2018)
Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29, 2352–2449 (2017)
Krishnaveni, B., Sridhar, S.: Approximation algorithm based on greedy approach for face recognition with partial occlusion. Multimed. Tools Appl. 78, 27511–27531 (2019)
Tenorio, E.Z., Thomaz, C.E.: Analisemultilinear discriminate deformas frontalis de imagens 2D de face. In: Proceedings of the X Simposio Brasileiro de Automacao Inteligente, SBAI, Universidade Federal de Sao Joao del Rei, Sao Joao del Rei, Minas Gerais, Brazil, pp. 266–271, September 2011
The Database of Faces, AT&T Laboratories Cambridge (2002). http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 IFIP International Federation for Information Processing
About this paper
Cite this paper
Krishnaveni, B., Sridhar, S. (2020). Role of Distance Measures in Approximate String Matching Algorithms for Face Recognition System. In: Chandrabose, A., Furbach, U., Ghosh, A., Kumar M., A. (eds) Computational Intelligence in Data Science. ICCIDS 2020. IFIP Advances in Information and Communication Technology, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-030-63467-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-63467-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63466-7
Online ISBN: 978-3-030-63467-4
eBook Packages: Computer ScienceComputer Science (R0)