Role of Distance Measures in Approximate String Matching Algorithms for Face Recognition System | SpringerLink
Skip to main content

Role of Distance Measures in Approximate String Matching Algorithms for Face Recognition System

  • Conference paper
  • First Online:
Computational Intelligence in Data Science (ICCIDS 2020)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 578))

Included in the following conference series:

  • 394 Accesses

Abstract

This paper is based on the recognition of faces using string matching. The approximate string matching is a method for finding an approximate match of a pattern within a string. Exact matching is impracticable for a larger amount of data as it involves more time. Those issues can be solved by finding an approximate match rather than an exact match. This paper aims to experiment with the performance of approximation string matching approaches using various distance measures such as Edit distance, Longest Common Subsequence (LCSS), Hamming distance, Jaro distance, and Jaro-Winkler distance. The algorithms generate a near-optimal solution to face recognition system with reduced computational complexity. This paper deals with the conversion of face images into strings, matching those image strings by using the approximation string matching algorithm that determines the distance and classifies a face image based on the minimum distance. Experiments have been performed with FEI and ORL face databases for the evaluation of approximation string matching algorithms and the results demonstrate the utility of distance measures for the face recognition system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.: Face recognition: a literature survey. ACM Comput. Surv. 35, 399–458 (2003)

    Google Scholar 

  2. Kirby, M., Sirovich, L.: Application of the Karhunen-Loève procedure for the characterization of the human face. IEEE Trans. Pattern Anal. Mach. Intell. 12, 103–108 (1990)

    Article  Google Scholar 

  3. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of the IEEE Conference on CVPR, pp. 586–591 (1991)

    Google Scholar 

  4. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognit. 34, 2067–2070 (2001)

    Article  Google Scholar 

  5. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fishy faces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)

    Google Scholar 

  6. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13, 1450–1464 (2002)

    Article  Google Scholar 

  7. Miar-Naimi, H., Davari, P.: A new fast and efficient HMM-based face recognition system using a 7-state HMM along with SVD coefficients. Iran. J. Electr. Electron. Eng. 4 (2008)

    Google Scholar 

  8. Geng, X., Zhou, Z., Smith-Miles, K.: Individual stable space: an approach to face recognition under uncontrolled conditions. IEEE Trans. Neural Netw. 19(8), 1354–1368 (2008)

    Article  Google Scholar 

  9. Gaston, J., Ming, J., Crookes, D.: Matching larger image areas for unconstrained face identification. IEEE Trans. Cybern. 49(8), 3191–3202 (2019)

    Google Scholar 

  10. Qiangchang, W., Guodong, G.: LS-CNN: characterizing local patches at multiple scales for face recognition. IEEE Trans. Inf. Forensics Secur. 15, 1640–1652 (2020)

    Article  Google Scholar 

  11. Alhendawi, K.M.A., Baharudin, S.: String matching algorithms (SMAs): survey & empirical analysis. J. Comput. Sci. Manag. 2(5), 2637–2644 (2013)

    Google Scholar 

  12. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)

    Article  Google Scholar 

  13. Ukkonen, E.: Algorithms for approximate string matching. Inf. Control 64(1–3), 100–118 (1985)

    Article  MathSciNet  Google Scholar 

  14. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, 1 edn. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  15. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)

    Article  MathSciNet  Google Scholar 

  16. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    Google Scholar 

  17. Hamming, R.W.: Error detecting and error-correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  18. Jaro, M. A.: Advances in record linkage methodology as applied to the 1985 census of Tampa Florida. J. Am. Stat. Assoc. 84(406), 414–420 (1989)

    Google Scholar 

  19. Winkler, W.E.: Overview of record linkage and current research directions (PDF). Research Report Series, RRS (2006)

    Google Scholar 

  20. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Google Scholar 

  21. Zhou, Z., Wagner, A., Mobahi, H., Wright, J., Ma, Y.: Face recognition with contiguous occlusion using Markov random fields. In: IEEE International Conference Computer Vision (ICCV), pp. 1050–1057, October 2009

    Google Scholar 

  22. He, R., Zheng, W.S., Tan, T., Sun, Z.: Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 261–275 (2014)

    Article  Google Scholar 

  23. Peng, Y., Li, L., Liu, S., Li, J., Cao, H.: Virtual samples and sparse representation based classification algorithm for face recognition. IET Comput. Vis. 13(2), 172–177 (2018)

    Article  Google Scholar 

  24. Fritz, K., Damiana, L., Serena, M.: A robust group sparse representation variational method with applications to face recognition. IEEE Trans. Image Process. 28(6), 2785–2798 (2019)

    Article  MathSciNet  Google Scholar 

  25. Weng, R., Lu, J., Hu, J., Yang, G., Tan, Y.P.: Robust feature set matching for partial face recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 601–608, December 2013

    Google Scholar 

  26. Wei, X., Li, C.-T., Lei, Z., Yi, D., Li, S.Z.: Dynamic image-to-class warping for occluded face recognition. IEEE Trans. Inf. Forensics Secur. 9(12), 2035–2050 (2014)

    Google Scholar 

  27. Chen, W., Gao, Y.: Face Recognition Using Ensemble String Matching. IEEE Trans. Image Process. 22(12), 4798–4808 (2013)

    Article  MathSciNet  Google Scholar 

  28. Gao, Y., Leung, M.K.H.: Human face profile recognition using attributed string. Pattern Recognit. 35(2), 353–360 (2002)

    Google Scholar 

  29. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2013)

    Article  Google Scholar 

  30. Mehdipour Ghazi, M., Kemal Ekenel, H.: A comprehensive analysis of deep learning-based representation for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 34–41 (2016)

    Google Scholar 

  31. Lu, J., Wang, G., Zhou, J.: Simultaneous feature and dictionary learning for image set based face recognition. IEEE Trans. Image Process. 26, 4042–4054 (2017)

    Article  MathSciNet  Google Scholar 

  32. Hu, G, Peng, X.Y., Hospedales, Y., Verbeek, T.M., Frankenstein, J.: Learning deep face representations using small data. IEEE Trans. Image Process. 27, 293–303 (2018)

    Google Scholar 

  33. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29, 2352–2449 (2017)

    Article  MathSciNet  Google Scholar 

  34. Krishnaveni, B., Sridhar, S.: Approximation algorithm based on greedy approach for face recognition with partial occlusion. Multimed. Tools Appl. 78, 27511–27531 (2019)

    Article  Google Scholar 

  35. Tenorio, E.Z., Thomaz, C.E.: Analisemultilinear discriminate deformas frontalis de imagens 2D de face. In: Proceedings of the X Simposio Brasileiro de Automacao Inteligente, SBAI, Universidade Federal de Sao Joao del Rei, Sao Joao del Rei, Minas Gerais, Brazil, pp. 266–271, September 2011

    Google Scholar 

  36. https://fei.edu.br/~cet/facedatabase.html

  37. The Database of Faces, AT&T Laboratories Cambridge (2002). http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Krishnaveni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishnaveni, B., Sridhar, S. (2020). Role of Distance Measures in Approximate String Matching Algorithms for Face Recognition System. In: Chandrabose, A., Furbach, U., Ghosh, A., Kumar M., A. (eds) Computational Intelligence in Data Science. ICCIDS 2020. IFIP Advances in Information and Communication Technology, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-030-63467-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63467-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63466-7

  • Online ISBN: 978-3-030-63467-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics