Nonlinear Regression in Dynamic Environments Using Particle Swarm Optimization | SpringerLink
Skip to main content

Nonlinear Regression in Dynamic Environments Using Particle Swarm Optimization

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2020)

Abstract

This paper extends a PSO-based nonlinear regression technique to dynamic environments whereby the induced model dynamically adjusts when an environmental change is detected. As such, this work hybridizes a PSO designed for dynamic environments with a least-squares approximation technique to induce structurally optimal nonlinear regression models. The proposed model was evaluated experimentally and compared with the dynamic PSOs, namely multi-swarm, reinitialized, and charged PSOs, to optimize the model structure and the regression parameters in the dynamic environment. The obtained results show that the proposed model was adaptive to the changing environment to yield structurally optimal models which consequently, outperformed the dynamic PSOs for the given datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gray, R.A., Docherty, P.D., Fisk, L.M., Murray, R.: A modified approach to objective surface generation within the Gauss-Newton parameter identification to ignore outlier data points. Biomed. Signal Process. Control 30, 162–169 (2016)

    Article  Google Scholar 

  2. Basics on Continuous Optimization, November 2019. http://www.brnt.eu/phd/node10.html

  3. Erdoğmuş, P., Ekiz, S.: Nonlinear regression using particle swarm optimization and genetic algorithm. Int. J. Comput. Appl. 153(6), 28–36 (2016)

    Google Scholar 

  4. Potgieter, G., Engelbrecht, A.P.: Genetic algorithm for structurally optimisation of learned polynomial expressions. Appl. Math. Comput. 186, 1441–1466 (2007)

    Article  MathSciNet  Google Scholar 

  5. Özel, T., Karpat, Y.: Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater. Manuf. Processes 22(5), 659–667 (2007)

    Article  Google Scholar 

  6. Hornik, K.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  7. Atici, U.: Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst. Appl. 38(8), 9609–9618 (2011)

    Article  Google Scholar 

  8. Lu, Z., Yang, C., Qin, D., Luo, Y., Momayez, M.: Estimating ultrasonic time-of-flight through echo signal envelope and modified Gauss-Newton method. Measurement 94, 355–363 (2016)

    Article  Google Scholar 

  9. Cheng, S., Zhao, C., Wu, J., Shi, Y.: Particle swarm optimization in regression analysis: a case study. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013. LNCS, vol. 7928, pp. 55–63. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38703-6_6

    Chapter  Google Scholar 

  10. Abdullah, S.M., Yassin, A.I.M., Tahir, N.M.: Particle swarm optimization and least squares estimation of NARMAX. ARPN J. Eng. Appl. Sci. 10(22), 10722–10726 (2015)

    Google Scholar 

  11. Blackwell, T.M.: Particle swarm optimization in dynamic environments. Evol. Comput. Dyn. Uncertain Environ. 51, 29–49 (2007)

    Google Scholar 

  12. Draper, N.R., Smith, H.: Applied Regression Analysis, vol. 326. Wiley, Hoboken (1998)

    Book  Google Scholar 

  13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  14. Fraleigh, J.B., Beauregard, R.A.: Linear Algebra, 3rd edn. Addison-Wesley Publishing Company, Upper Saddle River (1995)

    Google Scholar 

  15. Stigler, S.M.: Gauss and the invention of least squares. Ann. Stat. 9(3), 465–474 (1981)

    Article  MathSciNet  Google Scholar 

  16. Yang, S., Yao, X.: A comparative study on particle swarm optimization in dynamic environments. In: Yang, S., Yao, X. (eds.) Evolutionary Computation for DOPs, pp. 109–136. Springer, Heidelberg (2013)

    Google Scholar 

  17. Blackwell, T., Branke, J.: Multi-swarm optimisation in dynamic environments. Appl. Evol. Comput. 3005, 489–500 (2004)

    Article  Google Scholar 

  18. Blackwell, T.M., Bentley, P.J.: Don’t push me! Collision-avoidance swarms. In: Proceedings of the IEE Congress on Evolutionary Computation, vol. 2, pp. 1691–1696 (2002)

    Google Scholar 

  19. Blackwell, T.M., Bentley, P.J.: Dynamic search with charged swarms. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 19–26 (2002)

    Google Scholar 

  20. Blackwell, T.M., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

    Article  Google Scholar 

  21. Richter, H.: Detecting change in dynamic fitness landscapes. In: Proceedings of Congress on Evolutionary Computation, pp. 1613–1620 (2009)

    Google Scholar 

  22. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Norwell (2002)

    Book  Google Scholar 

  23. Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

    Article  Google Scholar 

  24. Mathworks: MATLAB. www.mathworks.com

  25. McKnight, P.E., Najab, J.: Issues with performance measures for dynamic multi-objective optimization. In: Proceedings of IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments, pp. 17–24 (2013)

    Google Scholar 

  26. Bennett, L., Swartzendruber, L., Brown, H.: Superconductivity magnetization modeling. In: NIST (1994)

    Google Scholar 

  27. Harries, M.: Splice-2 comparative evaluation: electricity pricing. Technical Report UNSW-CSE-TR-9905. Artificial Intelligence Group, School of Computer Science and Engineering, The University of New South Wales, Sydney 2052, Australia (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelishia Pillay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuranga, C., Pillay, N. (2020). Nonlinear Regression in Dynamic Environments Using Particle Swarm Optimization. In: Martín-Vide, C., Vega-Rodríguez, M.A., Yang, MS. (eds) Theory and Practice of Natural Computing. TPNC 2020. Lecture Notes in Computer Science(), vol 12494. Springer, Cham. https://doi.org/10.1007/978-3-030-63000-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63000-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62999-1

  • Online ISBN: 978-3-030-63000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics