Open-Loop Sidescan Sonar Mosaic and ANN Velocity Estimation | SpringerLink
Skip to main content

Open-Loop Sidescan Sonar Mosaic and ANN Velocity Estimation

  • Conference paper
  • First Online:
Advances in Physical Agents II (WAF 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1285))

Included in the following conference series:

  • 755 Accesses

Abstract

This paper presents a system to generate open-loop mosaics from the images obtained by a sidescan sonar using dead reckoning as a positioning system in a low cost ROV, which does not include a Doppler velocity log (DVL). The ROV velocity is then estimated using an artificial neural network (ANN) for feeding the dead reckoning positioning. The training process of the neural network is also described. The sidescan sonar readings are used, based on the currently estimated position, to update the sonar mosaic. The process of the transformations and corrections of the sidescan sonar are also described. Finally, some results obtained in a thermal power plant are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. León Martín, J.D.: Del Escandallo a los Sondadores Multihaz. Escuela de Hidrografía, Armada Española (2004)

    Google Scholar 

  2. Zitová, B., Flusser, J.: Image registration methods. In: Todorovic S. (ed.) Image and Vision Computing, pp. 977–1000 (2003). https://doi.org/10.1016/S0262-8856(03)00137-9

  3. Bennell, J.D.: Mosaicing of sidescan sonar images to map seabed features. In: Davies, J. (ed.) Marine Monitoring Handbook, pp. 1–5 (2001)

    Google Scholar 

  4. Blondel, P.: The Handbook of Sidescan Sonar (2009)

    Google Scholar 

  5. Palomer, A., Ridao, P., Ribas, D.: Multibeam 3D underwater SLAM with probabilistic registration. Sensors 16, 560 (2016). https://doi.org/10.3390/s16040560

  6. Rahman, S., Quattrini Li, A., Rekleitis, I.: Sonar visual inertial SLAM of underwater structures. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7 (2018). https://doi.org/10.1109/ICRA.2018.8460545

  7. Zhao, J., Yan, J., Zhang, Z., Meng, J.: A new radiometric correction method for side-scan sonar images in consideration of seabed sediment variation. Remote Sens. 9(6), 575 (2017). https://doi.org/10.3390/rs9060575

    Article  Google Scholar 

  8. Barron, J.L., Beauchemin, S.S.: The computation of optical flow. ACM Comput. Surv. 35 (1995). https://doi.org/10.1145/212094.212141

  9. Chailloux, C., Zerr, B.: Non symbolic methods to register sonar images. Oceans 276–281 (2005). https://doi.org/10.1109/OCEANSE.2005.1511725

  10. Vandrish, P., Vardy, A., Walker, D., Dobre, A.O.: Side-scan sonar image registration for AUV navigation. In: Underwater Technology (UT), 2011 IEEE Symposium on and 2011 Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC), pp. 1–7. IEEE Xplore (2011). https://doi.org/10.1109/UT.2011.5774096

  11. Zhao, J., Wang, A., Zhang, H., Wang, X.: Mosaic method of side-scan sonar strip images using corresponding features. IET Image Process 616–623 (2013). https://doi.org/10.1049/iet-ipr.2012.0468

  12. Chailloux, C., Le Caillec, J.M., Gueriot, D., Zerr, B.: Intensity-based block matching algorithm for mosaicing sonar images. IEEE J. Oceanic Eng. 36(4), 627–645. https://doi.org/10.1109/JOE.2011.2141850

  13. Fotouhi, A., Montazeri, M., Jannatipour, M.: Vehicle’s velocity time series prediction using neural network. Systems Simulation and Control Laboratory, Iran (2011)

    Google Scholar 

  14. Thorsell, E.: Vehicle speed-profile prediction without spatial information. Chalmers University of Technology, Sweden (2013)

    Google Scholar 

  15. Karras, G.C., Kyriakopoulos, K.J.: Localization of an underwater vehicle using an IMU and a laser-based vision system. In: Mediterranean Conference on Control Automation, Athens, pp. 1–6 (2007). https://doi.org/10.1109/MED.2007.4433777

  16. Zhao, B., Blanke, M., Skjetne, R.: Particle filter ROV navigation using hydroacoustic position and speed log measurements. In: American Control Conference (ACC), Montreal, pp. 6209–6215 (2012). https://doi.org/10.1109/ACC.2012.6315511

  17. Ye, X., Yang, H., Li, C., Jia, Y., Li, P.: A gray scale correction method for side-scan sonar images based on Retinex. Remote Sens. (2019). https://doi.org/10.3390/rs11111281

    Article  Google Scholar 

  18. Burguera, A., Oliver, G.: High-resolution underwater mapping using side-scan sonar. PLOS One 1–41 (2016). https://doi.org/10.1371/journal.pone.0146396

  19. Gautier, S., Morissette, G.: Unsupervised extraction of underwater regions of interest in sidescan sonar imagery. J. Ocean Technol. 15, 1–15 (2019)

    Google Scholar 

  20. Wu, X.: An efficient antialiasing technique. In: ACM SIGGRAPH Computer Graphics, pp. 143–152 (1991). https://doi.org/10.1145/127719.122734

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Bernabé Murcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernabé Murcia, J.M., Martínez-Barberá, H. (2021). Open-Loop Sidescan Sonar Mosaic and ANN Velocity Estimation. In: Bergasa, L.M., Ocaña, M., Barea, R., López-Guillén, E., Revenga, P. (eds) Advances in Physical Agents II. WAF 2020. Advances in Intelligent Systems and Computing, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-62579-5_16

Download citation

Publish with us

Policies and ethics