Abstract
This paper presents a system to generate open-loop mosaics from the images obtained by a sidescan sonar using dead reckoning as a positioning system in a low cost ROV, which does not include a Doppler velocity log (DVL). The ROV velocity is then estimated using an artificial neural network (ANN) for feeding the dead reckoning positioning. The training process of the neural network is also described. The sidescan sonar readings are used, based on the currently estimated position, to update the sonar mosaic. The process of the transformations and corrections of the sidescan sonar are also described. Finally, some results obtained in a thermal power plant are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
León Martín, J.D.: Del Escandallo a los Sondadores Multihaz. Escuela de Hidrografía, Armada Española (2004)
Zitová, B., Flusser, J.: Image registration methods. In: Todorovic S. (ed.) Image and Vision Computing, pp. 977–1000 (2003). https://doi.org/10.1016/S0262-8856(03)00137-9
Bennell, J.D.: Mosaicing of sidescan sonar images to map seabed features. In: Davies, J. (ed.) Marine Monitoring Handbook, pp. 1–5 (2001)
Blondel, P.: The Handbook of Sidescan Sonar (2009)
Palomer, A., Ridao, P., Ribas, D.: Multibeam 3D underwater SLAM with probabilistic registration. Sensors 16, 560 (2016). https://doi.org/10.3390/s16040560
Rahman, S., Quattrini Li, A., Rekleitis, I.: Sonar visual inertial SLAM of underwater structures. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7 (2018). https://doi.org/10.1109/ICRA.2018.8460545
Zhao, J., Yan, J., Zhang, Z., Meng, J.: A new radiometric correction method for side-scan sonar images in consideration of seabed sediment variation. Remote Sens. 9(6), 575 (2017). https://doi.org/10.3390/rs9060575
Barron, J.L., Beauchemin, S.S.: The computation of optical flow. ACM Comput. Surv. 35 (1995). https://doi.org/10.1145/212094.212141
Chailloux, C., Zerr, B.: Non symbolic methods to register sonar images. Oceans 276–281 (2005). https://doi.org/10.1109/OCEANSE.2005.1511725
Vandrish, P., Vardy, A., Walker, D., Dobre, A.O.: Side-scan sonar image registration for AUV navigation. In: Underwater Technology (UT), 2011 IEEE Symposium on and 2011 Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC), pp. 1–7. IEEE Xplore (2011). https://doi.org/10.1109/UT.2011.5774096
Zhao, J., Wang, A., Zhang, H., Wang, X.: Mosaic method of side-scan sonar strip images using corresponding features. IET Image Process 616–623 (2013). https://doi.org/10.1049/iet-ipr.2012.0468
Chailloux, C., Le Caillec, J.M., Gueriot, D., Zerr, B.: Intensity-based block matching algorithm for mosaicing sonar images. IEEE J. Oceanic Eng. 36(4), 627–645. https://doi.org/10.1109/JOE.2011.2141850
Fotouhi, A., Montazeri, M., Jannatipour, M.: Vehicle’s velocity time series prediction using neural network. Systems Simulation and Control Laboratory, Iran (2011)
Thorsell, E.: Vehicle speed-profile prediction without spatial information. Chalmers University of Technology, Sweden (2013)
Karras, G.C., Kyriakopoulos, K.J.: Localization of an underwater vehicle using an IMU and a laser-based vision system. In: Mediterranean Conference on Control Automation, Athens, pp. 1–6 (2007). https://doi.org/10.1109/MED.2007.4433777
Zhao, B., Blanke, M., Skjetne, R.: Particle filter ROV navigation using hydroacoustic position and speed log measurements. In: American Control Conference (ACC), Montreal, pp. 6209–6215 (2012). https://doi.org/10.1109/ACC.2012.6315511
Ye, X., Yang, H., Li, C., Jia, Y., Li, P.: A gray scale correction method for side-scan sonar images based on Retinex. Remote Sens. (2019). https://doi.org/10.3390/rs11111281
Burguera, A., Oliver, G.: High-resolution underwater mapping using side-scan sonar. PLOS One 1–41 (2016). https://doi.org/10.1371/journal.pone.0146396
Gautier, S., Morissette, G.: Unsupervised extraction of underwater regions of interest in sidescan sonar imagery. J. Ocean Technol. 15, 1–15 (2019)
Wu, X.: An efficient antialiasing technique. In: ACM SIGGRAPH Computer Graphics, pp. 143–152 (1991). https://doi.org/10.1145/127719.122734
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bernabé Murcia, J.M., Martínez-Barberá, H. (2021). Open-Loop Sidescan Sonar Mosaic and ANN Velocity Estimation. In: Bergasa, L.M., Ocaña, M., Barea, R., López-Guillén, E., Revenga, P. (eds) Advances in Physical Agents II. WAF 2020. Advances in Intelligent Systems and Computing, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-62579-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-62579-5_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62578-8
Online ISBN: 978-3-030-62579-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)