Abstract
With the ever-increasing number of RDF-based knowledge graphs, the number of interconnections between these graphs using the owl:sameAs property has exploded. Moreover, as several works indicate, the identity as defined by the semantics of owl:sameAs could be too rigid, and this property is therefore often misused. Indeed, identity must be seen as context-dependent. These facts lead to poor quality data when using the owl:sameAs inference capabilities. Therefore, contextual identity could be a possible path to better quality knowledge. Unlike classical identity, with contextual identity, only certain properties can be propagated between contextually identical entities. Continuing this work on contextual identity, we propose an approach, based on sentence embedding, to find semi-automatically a set of properties, for a given identity context, that can be propagated between contextually identical entities. Quantitative experiments against a gold standard show that our approach achieved promising results. Besides, the use cases provided demonstrate that identifying the properties that can be propagated helps users achieve the desired results that meet their needs when querying a knowledge graph, i.e., more complete and accurate answers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
References
Achichi, M., Bellahsene, Z., Todorov, K.: A survey on web data linking. Revue des Sciences et Technologies de l’Information-Série ISI: Ingénierie des Systèmes d’Information (2015)
Beek, W., Schlobach, S., van Harmelen, F.: A contextualised semantics for owl:sameAs. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 405–419. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_25
Cer, D., et al.: Universal sentence encoder. CoRR abs/1803.11175 (2018)
Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. In: EMNLP, pp. 670–680. Association for Computational Linguistics (2017)
Ding, L., Shinavier, J., Finin, T., McGuinness, D.L.: owl: sameAs and Linked Data: An empirical study. In: Proceedings of the Second Web Science Conference, Raleigh, NC, USA, April 2010
Drummond, N., Shearer, R.: The open world assumption. In: eSI Workshop: The Closed World of Databases Meets the Open World of the Semantic Web, vol. 15 (2006)
Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2018). https://doi.org/10.3233/SW-170275
Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange (HDT). Web Semant. Sci. Serv. Agents World Wide Web 19, 22–41 (2013). http://www.websemanticsjournal.org/index.php/ps/article/view/328
Ferrara, A., Nikolov, A., Scharffe, F.: Data linking for the semantic web. Int. J. Semant. Web Inf. Syst. (IJSWIS) 7(3), 46–76 (2011)
Guarino, N., Welty, C.A.: Evaluating ontological decisions with OntoClean. Commun. ACM 45(2), 61–65 (2002)
Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When owl:sameAs isn’t the same: an analysis of identity in linked data. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 305–320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_20
Hartig, O., Thompson, B.: Foundations of an alternative approach to reification in RDF. arXiv abs/1406.3399 (2014)
Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR, vol. 6, pp. 57–67 (2006)
Idrissou, A.K., Hoekstra, R., van Harmelen, F., Khalili, A., den Besselaar, P.V.: Is my: sameAs the same as your: sameAs?: Lenticular lenses for context-specific identity. In: K-CAP (2017)
Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44, 223–270 (1908)
Martínez-Prieto, M.A., Arias Gallego, M., Fernández, J.D.: Exchange and consumption of huge RDF data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 437–452. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_36
Nentwig, M., Hartung, M., Ngonga Ngomo, A.C., Rahm, E.: A survey of current link discovery frameworks. Semant. Web 8(3), 419–436 (2017)
Noy, N.F., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019). https://doi.org/10.1145/3331166
Raad, J., Pernelle, N., Saïs, F.: Detection of contextual identity links in a knowledge base. In: K-CAP (2017)
Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30
Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24(4), 35–43 (2001)
Subramanian, S., Trischler, A., Bengio, Y., Pal, C.J.: Learning general purpose distributed sentence representations via large scale multi-task learning. CoRR abs/1804.00079 (2018)
Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46(sup1), 234–240 (1970)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Paris, PH., Hamdi, F., Niraula, N., Si-said Cherfi, S. (2020). Contextual Propagation of Properties for Knowledge Graphs. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12506. Springer, Cham. https://doi.org/10.1007/978-3-030-62419-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-62419-4_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62418-7
Online ISBN: 978-3-030-62419-4
eBook Packages: Computer ScienceComputer Science (R0)