Contextual Propagation of Properties for Knowledge Graphs | SpringerLink
Skip to main content

Contextual Propagation of Properties for Knowledge Graphs

A Sentence Embedding Based Approach

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2020 (ISWC 2020)

Abstract

With the ever-increasing number of RDF-based knowledge graphs, the number of interconnections between these graphs using the owl:sameAs property has exploded. Moreover, as several works indicate, the identity as defined by the semantics of owl:sameAs could be too rigid, and this property is therefore often misused. Indeed, identity must be seen as context-dependent. These facts lead to poor quality data when using the owl:sameAs inference capabilities. Therefore, contextual identity could be a possible path to better quality knowledge. Unlike classical identity, with contextual identity, only certain properties can be propagated between contextually identical entities. Continuing this work on contextual identity, we propose an approach, based on sentence embedding, to find semi-automatically a set of properties, for a given identity context, that can be propagated between contextually identical entities. Quantitative experiments against a gold standard show that our approach achieved promising results. Besides, the use cases provided demonstrate that identifying the properties that can be propagated helps users achieve the desired results that meet their needs when querying a knowledge graph, i.e., more complete and accurate answers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.wikidata.org.

  2. 2.

    https://wiki.dbpedia.org/.

  3. 3.

    https://www.w3.org/TR/owl-ref/.

  4. 4.

    https://github.com/PHParis/ConProKnow.

  5. 5.

    https://github.com/facebookresearch/InferSent.

  6. 6.

    https://github.com/Maluuba/gensen.

  7. 7.

    https://tfhub.dev/google/universal-sentence-encoder/2.

  8. 8.

    http://gaia.infor.uva.es/hdt/wikidata/wikidata2018_09_11.hdt.gz.

References

  1. Achichi, M., Bellahsene, Z., Todorov, K.: A survey on web data linking. Revue des Sciences et Technologies de l’Information-Série ISI: Ingénierie des Systèmes d’Information (2015)

    Google Scholar 

  2. Beek, W., Schlobach, S., van Harmelen, F.: A contextualised semantics for owl:sameAs. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 405–419. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_25

    Chapter  Google Scholar 

  3. Cer, D., et al.: Universal sentence encoder. CoRR abs/1803.11175 (2018)

    Google Scholar 

  4. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. In: EMNLP, pp. 670–680. Association for Computational Linguistics (2017)

    Google Scholar 

  5. Ding, L., Shinavier, J., Finin, T., McGuinness, D.L.: owl: sameAs and Linked Data: An empirical study. In: Proceedings of the Second Web Science Conference, Raleigh, NC, USA, April 2010

    Google Scholar 

  6. Drummond, N., Shearer, R.: The open world assumption. In: eSI Workshop: The Closed World of Databases Meets the Open World of the Semantic Web, vol. 15 (2006)

    Google Scholar 

  7. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2018). https://doi.org/10.3233/SW-170275

    Article  Google Scholar 

  8. Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange (HDT). Web Semant. Sci. Serv. Agents World Wide Web 19, 22–41 (2013). http://www.websemanticsjournal.org/index.php/ps/article/view/328

    Article  Google Scholar 

  9. Ferrara, A., Nikolov, A., Scharffe, F.: Data linking for the semantic web. Int. J. Semant. Web Inf. Syst. (IJSWIS) 7(3), 46–76 (2011)

    Article  Google Scholar 

  10. Guarino, N., Welty, C.A.: Evaluating ontological decisions with OntoClean. Commun. ACM 45(2), 61–65 (2002)

    Article  Google Scholar 

  11. Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When owl:sameAs isn’t the same: an analysis of identity in linked data. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 305–320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_20

    Chapter  Google Scholar 

  12. Hartig, O., Thompson, B.: Foundations of an alternative approach to reification in RDF. arXiv abs/1406.3399 (2014)

    Google Scholar 

  13. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR, vol. 6, pp. 57–67 (2006)

    Google Scholar 

  14. Idrissou, A.K., Hoekstra, R., van Harmelen, F., Khalili, A., den Besselaar, P.V.: Is my: sameAs the same as your: sameAs?: Lenticular lenses for context-specific identity. In: K-CAP (2017)

    Google Scholar 

  15. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44, 223–270 (1908)

    Google Scholar 

  16. Martínez-Prieto, M.A., Arias Gallego, M., Fernández, J.D.: Exchange and consumption of huge RDF data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 437–452. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_36

    Chapter  Google Scholar 

  17. Nentwig, M., Hartung, M., Ngonga Ngomo, A.C., Rahm, E.: A survey of current link discovery frameworks. Semant. Web 8(3), 419–436 (2017)

    Article  Google Scholar 

  18. Noy, N.F., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019). https://doi.org/10.1145/3331166

    Article  Google Scholar 

  19. Raad, J., Pernelle, N., Saïs, F.: Detection of contextual identity links in a knowledge base. In: K-CAP (2017)

    Google Scholar 

  20. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    Chapter  Google Scholar 

  21. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24(4), 35–43 (2001)

    Google Scholar 

  22. Subramanian, S., Trischler, A., Bengio, Y., Pal, C.J.: Learning general purpose distributed sentence representations via large scale multi-task learning. CoRR abs/1804.00079 (2018)

    Google Scholar 

  23. Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46(sup1), 234–240 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Paris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paris, PH., Hamdi, F., Niraula, N., Si-said Cherfi, S. (2020). Contextual Propagation of Properties for Knowledge Graphs. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12506. Springer, Cham. https://doi.org/10.1007/978-3-030-62419-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62419-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62418-7

  • Online ISBN: 978-3-030-62419-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics