Abstract
Sexism, a pervasive form of oppression, causes profound suffering through various manifestations. Given the rising number of experiences of sexism reported online, categorizing these recollections automatically can aid the fight against sexism, as it can facilitate effective analyses by gender studies researchers and government officials involved in policy making. In this paper, we explore the fine-grained, multi-label classification of accounts (reports) of sexism. To the best of our knowledge, we consider substantially more categories of sexism than any related prior work through our 23-class problem formulation. Moreover, we present the first semi-supervised work for the multi-label classification of accounts describing any type(s) of sexism wherein the approach goes beyond merely fine-tuning pre-trained models using unlabeled data. We devise self-training based techniques tailor-made for the multi-label nature of the problem to utilize unlabeled samples for augmenting the labeled set. We identify high textual diversity with respect to the existing labeled set as a desirable quality for candidate unlabeled instances and develop methods for incorporating it into our approach. We also explore ways of infusing class imbalance alleviation for multi-label classification into our semi-supervised learning, independently and in conjunction with the method involving diversity. Several proposed methods outperform a variety of baselines on a recently released dataset for multi-label sexism categorization across several standard metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abney, S.: Semisupervised Learning for Computational Linguistics. Chapman and Hall/CRC, Boca Raton (2007)
Agrawal, S., Awekar, A.: Deep learning for detecting cyberbullying across multiple social media platforms. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 141–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_11
Anzovino, M., Fersini, E., Rosso, P.: Automatic identification and classification of misogynistic language on twitter. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds.) NLDB 2018. LNCS, vol. 10859, pp. 57–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91947-8_6
Badjatiya, P., Gupta, S., Gupta, M., Varma, V.: Deep learning for hate speech detection in tweets. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 759–760. International World Wide Web Conferences Steering Committee (2017)
Cer, D., et al.: Universal sentence encoder (2018). arXiv preprint arXiv:1803.11175
Chowdhury, A.G., Sawhney, R., Shah, R., Mahata, D.: #YouToo? Detection of personal recollections of sexual harassment on social media. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2527–2537 (2019)
Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection and the problem of offensive language. In: Eleventh International AAAI Conference on Web and Social Media (2017)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2018). arXiv preprint arXiv:1810.04805
ElSherief, M., Belding, E., Nguyen, D.: #NotOkay: understanding gender-based violence in social media. In: Eleventh International AAAI Conference on Web and Social Media (2017)
Frenda, S., Ghanem, B., Montes-y Gómez, M., Rosso, P.: Online hate speech against women: automatic identification of misogyny and sexism on twitter. J. Intell. Fuzzy Syst. 36(5), 4743–4752 (2019)
Jafarpour, B., Matwin, S., et al.: Boosting text classification performance on sexist tweets by text augmentation and text generation using a combination of knowledge graphs. In: Proceedings of the 2nd Workshop on Abusive Language Online (ALW2). pp. 107–114 (2018)
Jha, A., Mamidi, R.: When does a compliment become sexist? Analysis and classification of ambivalent sexism using twitter data. In: Proceedings of the Second Workshop on NLP and Computational Social Science, pp. 7–16 (2017)
Karlekar, S., Bansal, M.: Safecity: understanding diverse forms of sexual harassment personal stories. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2805–2811 (2018)
Khatua, A., Cambria, E., Khatua, A.: Sounds of silence breakers: exploring sexual violence on twitter. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 397–400 (2018)
Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014)
Melville, S., Eccles, K., Yasseri, T.: Topic modelling of everyday sexism project entries. Front. Dig. Hum. 5, 28 (2018)
Parikh, P., et al.: Multi-label categorization of accounts of sexism using a neural framework. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1642–1652 (2019)
Pennebaker, J.W., Boyd, R.L., Jordan, K., Blackburn, K.: The development and psychometric properties of LIWC2015. Technical report (2015)
Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of NAACL (2018)
Van Hee, C., et al.: Detection and fine-grained classification of cyberbullying events. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, pp. 672–680 (2015)
Wang, J., Yu, L.C., Lai, K.R., Zhang, X.: Dimensional sentiment analysis using a regional CNN-LSTM model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 225–230 (2016)
Waseem, Z., Hovy, D.: Hateful symbols or hateful people? Predictive features for hate speech detection on twitter. In: Proceedings of the NAACL Student Research Workshop, pp. 88–93 (2016)
Xiao, H.: bert-as-service (2018). https://github.com/hanxiao/bert-as-service
Yan, P., Li, L., Chen, W., Zeng, D.: Quantum-inspired density matrix encoder for sexual harassment personal stories classification. In: 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 218–220. IEEE (2019)
Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)
Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: 33rd Annual Meeting of the Association for Computational Linguistics, pp. 189–196 (1995)
Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)
Zhang, Z., Luo, L.: Hate speech detection: a solved problem? The challenging case of long tail on twitter. In: Semantic Web, pp. 1–21 (2018)
Zhou, C., Sun, C., Liu, Z., Lau, F.: A C-LSTM neural network for text classification (2015). arXiv preprint arXiv:1511.08630
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Abburi, H., Parikh, P., Chhaya, N., Varma, V. (2020). Fine-grained Multi-label Sexism Classification Using Semi-supervised Learning. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-62008-0_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62007-3
Online ISBN: 978-3-030-62008-0
eBook Packages: Computer ScienceComputer Science (R0)