Deep Learning for House Categorisation, a Proposal Towards Automation in Land Registry | SpringerLink
Skip to main content

Deep Learning for House Categorisation, a Proposal Towards Automation in Land Registry

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Abstract

Land typology classification is one of the main challenges of Land Registries all around the world. This process has historically been carried out by hand, requiring a large workforce and long processing times. Satellite imagery is shaking up the information retrieval methods for rural areas, where automatic algorithms have also been developed for land categorisation, but never for urban areas. This study provides an algorithm which can potentially speed up the decision-making process, reduce and detect biases; by automatically classifying images of houses facades into land registry categories. Convolutional Neural Networks are combined with a SVM and trained with over 5,000 labelled images. Success rate is above 85% and single image processing time is of the order of milliseconds. Results make it possible to reduce operating costs and to improve the classification performance by taking the human factor out of the equation.

Supported by the project “Intelligent and sustainable mobility supported by multi-agent systems and edge computing (InEDGEMobility): Towards Sustainable Intelligent Mobility: Blockchain-based framework for IoT Security”, Reference: RTI2018–095390-B-C32, financed by the Spanish Ministry of Science, Innovation and Universities (MCIU), the State Research Agency (AEI) and the European Regional Development Fund (FEDER).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atwood, D.A.: Land registration in africa: the impact on agricultural production. World Dev. 18(5), 659–671 (1990)

    Article  Google Scholar 

  2. Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in iot-blockchain management. Inf. Fusion 49, 227–239 (2019)

    Article  Google Scholar 

  3. Casado-Vara, R., Martin-del Rey, A., Affes, S., Prieto, J., Corchado, J.M.: IoT network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Gener. Comput. Syst. 102, 965–977 (2020)

    Article  Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  5. Deng, L.: The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  6. Elleuch, M., Maalej, R., Kherallah, M.: A new design based-svm of the cnn classifier architecture with dropout for offline arabic handwritten recognition. Procedia Comput. Sci. 80, 1712–1723 (2016)

    Article  Google Scholar 

  7. García-Retuerta, D., Bartolomé, Á., Chamoso, P., Corchado, J.M., González-Briones, A.: Original Content Verification Using Hash-Based Video Analysis. In: Novais, P., Lloret, J., Chamoso, P., Carneiro, D., Navarro, E., Omatu, S. (eds.) ISAmI 2019. AISC, vol. 1006, pp. 120–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24097-4_15

  8. García-Retuerta, D., Bartolomé, Á., Chamoso, P., Corchado, J.M.: Counter-terrorism video analysis using hash-based algorithms. Algorithms 12(5), 110 (2019)

    Article  Google Scholar 

  9. Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45

    Chapter  Google Scholar 

  10. Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic segmentation-aware CNN model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1134–1142 (2015)

    Google Scholar 

  11. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the v in VQA matter: Elevating the role of image understanding in visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6904–6913 (2017)

    Google Scholar 

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  15. Hunter, G.J., Williamson, I.P.: The development of a historical digital cadastral database. Int. J. Geogr. Inf. Syst. 4(2), 169–179 (1990)

    Article  Google Scholar 

  16. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)

    Google Scholar 

  17. Li, T., Prieto, J., Fan, H., Corchado, J.M.: A robust multi-sensor phd filter based on multi-sensor measurement clustering. IEEE Commun. Lett. 22(10), 2064–2067 (2018)

    Article  Google Scholar 

  18. Matikainen, L., Hyyppä, J., Kaartinen, H.: Automatic detection of changes from laser scanner and aerial image data for updating building maps. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 35, 434–439 (2004)

    Google Scholar 

  19. Müller, S., Zaum, D.W.: Robust building detection in aerial images. Int. Arch. Photogram. Remote Sens. 36(B2/W24), 143–148 (2005)

    Google Scholar 

  20. Niu, X.X., Suen, C.Y.: A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recogn. 45(4), 1318–1325 (2012)

    Article  Google Scholar 

  21. Osskó, A.: Advantages of the unified multipurpose land registry system. In: International Conference on Enhancing Land Registration and Cadastre for Economic Growth in India, vol. 31 (2006)

    Google Scholar 

  22. Payne, G.: Urban land tenure policy options: titles or rights? Habitat Int. 25(3), 415–429 (2001)

    Article  Google Scholar 

  23. Prieto, J., Mazuelas, S., Win, M.Z.: Context-aided inertial navigation via belief condensation. IEEE Trans. Signal Process. 64(12), 3250–3261 (2016)

    Article  MathSciNet  Google Scholar 

  24. Ravanbakhsh, M., Mousavi, H., Rastegari, M., Murino, V., Davis, L.S.: Action recognition with image based CNN features. arXiv preprint arXiv:1512.03980 (2015)

  25. Sagiroglu, S., Sinanc, D.: Big data: a review. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 42–47. IEEE (2013)

    Google Scholar 

  26. Sampaio, W.B., Diniz, E.M., Silva, A.C., De Paiva, A.C., Gattass, M.: Detection of masses in mammogram images using CNN, geostatistic functions and SVM. Comput. Biol. Med. 41(8), 653–664 (2011)

    Article  Google Scholar 

  27. Sánchez, A.J., Rodríguez, S., de la Prieta, F., González, A.: Adaptive interface ecosystems in smart cities control systems. Future Gener. Comput. Syst. 101, 605–620 (2019)

    Article  Google Scholar 

  28. Vitruvius, M.P.: The ten books on architecture, translated by morris hicky morgan (1960)

    Google Scholar 

  29. Xue, D.X., Zhang, R., Feng, H., Wang, Y.L.: CNN-SVM for microvascular morphological type recognition with data augmentation. J. Med. Biol. Eng. 36(6), 755–764 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Garcia-Retuerta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia-Retuerta, D., Casado-Vara, R., Calvo-Rolle, J.L., Quintián, H., Prieto, J. (2020). Deep Learning for House Categorisation, a Proposal Towards Automation in Land Registry. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics