Abstract
Land typology classification is one of the main challenges of Land Registries all around the world. This process has historically been carried out by hand, requiring a large workforce and long processing times. Satellite imagery is shaking up the information retrieval methods for rural areas, where automatic algorithms have also been developed for land categorisation, but never for urban areas. This study provides an algorithm which can potentially speed up the decision-making process, reduce and detect biases; by automatically classifying images of houses facades into land registry categories. Convolutional Neural Networks are combined with a SVM and trained with over 5,000 labelled images. Success rate is above 85% and single image processing time is of the order of milliseconds. Results make it possible to reduce operating costs and to improve the classification performance by taking the human factor out of the equation.
Supported by the project “Intelligent and sustainable mobility supported by multi-agent systems and edge computing (InEDGEMobility): Towards Sustainable Intelligent Mobility: Blockchain-based framework for IoT Security”, Reference: RTI2018–095390-B-C32, financed by the Spanish Ministry of Science, Innovation and Universities (MCIU), the State Research Agency (AEI) and the European Regional Development Fund (FEDER).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atwood, D.A.: Land registration in africa: the impact on agricultural production. World Dev. 18(5), 659–671 (1990)
Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in iot-blockchain management. Inf. Fusion 49, 227–239 (2019)
Casado-Vara, R., Martin-del Rey, A., Affes, S., Prieto, J., Corchado, J.M.: IoT network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Gener. Comput. Syst. 102, 965–977 (2020)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Deng, L.: The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)
Elleuch, M., Maalej, R., Kherallah, M.: A new design based-svm of the cnn classifier architecture with dropout for offline arabic handwritten recognition. Procedia Comput. Sci. 80, 1712–1723 (2016)
García-Retuerta, D., Bartolomé, Á., Chamoso, P., Corchado, J.M., González-Briones, A.: Original Content Verification Using Hash-Based Video Analysis. In: Novais, P., Lloret, J., Chamoso, P., Carneiro, D., Navarro, E., Omatu, S. (eds.) ISAmI 2019. AISC, vol. 1006, pp. 120–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24097-4_15
García-Retuerta, D., Bartolomé, Á., Chamoso, P., Corchado, J.M.: Counter-terrorism video analysis using hash-based algorithms. Algorithms 12(5), 110 (2019)
Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45
Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic segmentation-aware CNN model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1134–1142 (2015)
Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the v in VQA matter: Elevating the role of image understanding in visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6904–6913 (2017)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Hunter, G.J., Williamson, I.P.: The development of a historical digital cadastral database. Int. J. Geogr. Inf. Syst. 4(2), 169–179 (1990)
Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)
Li, T., Prieto, J., Fan, H., Corchado, J.M.: A robust multi-sensor phd filter based on multi-sensor measurement clustering. IEEE Commun. Lett. 22(10), 2064–2067 (2018)
Matikainen, L., Hyyppä, J., Kaartinen, H.: Automatic detection of changes from laser scanner and aerial image data for updating building maps. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 35, 434–439 (2004)
Müller, S., Zaum, D.W.: Robust building detection in aerial images. Int. Arch. Photogram. Remote Sens. 36(B2/W24), 143–148 (2005)
Niu, X.X., Suen, C.Y.: A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recogn. 45(4), 1318–1325 (2012)
Osskó, A.: Advantages of the unified multipurpose land registry system. In: International Conference on Enhancing Land Registration and Cadastre for Economic Growth in India, vol. 31 (2006)
Payne, G.: Urban land tenure policy options: titles or rights? Habitat Int. 25(3), 415–429 (2001)
Prieto, J., Mazuelas, S., Win, M.Z.: Context-aided inertial navigation via belief condensation. IEEE Trans. Signal Process. 64(12), 3250–3261 (2016)
Ravanbakhsh, M., Mousavi, H., Rastegari, M., Murino, V., Davis, L.S.: Action recognition with image based CNN features. arXiv preprint arXiv:1512.03980 (2015)
Sagiroglu, S., Sinanc, D.: Big data: a review. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 42–47. IEEE (2013)
Sampaio, W.B., Diniz, E.M., Silva, A.C., De Paiva, A.C., Gattass, M.: Detection of masses in mammogram images using CNN, geostatistic functions and SVM. Comput. Biol. Med. 41(8), 653–664 (2011)
Sánchez, A.J., Rodríguez, S., de la Prieta, F., González, A.: Adaptive interface ecosystems in smart cities control systems. Future Gener. Comput. Syst. 101, 605–620 (2019)
Vitruvius, M.P.: The ten books on architecture, translated by morris hicky morgan (1960)
Xue, D.X., Zhang, R., Feng, H., Wang, Y.L.: CNN-SVM for microvascular morphological type recognition with data augmentation. J. Med. Biol. Eng. 36(6), 755–764 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Garcia-Retuerta, D., Casado-Vara, R., Calvo-Rolle, J.L., Quintián, H., Prieto, J. (2020). Deep Learning for House Categorisation, a Proposal Towards Automation in Land Registry. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_58
Download citation
DOI: https://doi.org/10.1007/978-3-030-61705-9_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61704-2
Online ISBN: 978-3-030-61705-9
eBook Packages: Computer ScienceComputer Science (R0)