The Effect of Urban and Rural Mobility Behaviour on Congestion and Emissions Resulting from Private Motorized Traffic | SpringerLink
Skip to main content

The Effect of Urban and Rural Mobility Behaviour on Congestion and Emissions Resulting from Private Motorized Traffic

  • Conference paper
  • First Online:
Advances in Social Simulation (ESSA 2019)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

In this study we investigate the different effects of urban and rural mobility behaviour on congestion and emissions. For this we use a mesoscopic hybrid agent-based network traffic model to simulate traffic in a city on a 1:1 scale. The main advantage of the used model is that it does not need origin-destination data as an input, but rather calculates this information based on mobility behaviour. This makes it possible to produce a population of urban agents, but giving them typical rural mobility behaviour. This changes how much they travel, what method of transport they use, as well as the reason and length of their trips. We can directly compare the resulting congestion, CO\(_2\) emissions and NO\(_X\) emissions with local and temporal resolution and investigate the differences. We find that mobility behaviour has a paramount effect on the traffic system. Simulating an urban area, but using rural mobility behaviour, leads to an increase in emissions of roughly 70% inside the city limits and heavy congestion throughout the city. This result highlights the importance of understanding and shaping mobility behaviour when looking for a sustainable solution to the problems of transportation and mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 28599
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 35749
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 35749
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Anderl, S. Haider, C. Lampert, L. Moosmann, K. Pazdernik, D. Pertl, M. Pinterits, S. Poupa, M. Purzner, G. Schmidt et al., Austria Annual Air Emission Inventory 1990–2014: Submission Under National Emission Ceilings Directive2001/81/ec (Umweltbundesamt GmbH, Wien, 2016)

    Google Scholar 

  2. J. Barceló, L. Montero, M. Bullejos, O. Serch, C. Carmona, Dynamic od matrix estimation exploiting bluetooth data in urban networks, in: Proceedings of the 14th International Conference on Automatic Control, Modelling & Simulation, and Proceedings of the 11th International Conference on Microelectronics, Nanoelectronics, Optoelectronics. pp. 116–121. ACMIN’12, World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2012)

    Google Scholar 

  3. E. Bert, E. Chung, A.G. Dumont, Exploring the use of dta for origin-destination matrix estimation, in Proceedings of the 6th STRC Swiss Transport Research (01 2006)

    Google Scholar 

  4. G. Boeing, OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)

    Article  Google Scholar 

  5. N. Caceres, J. Wideberg, F. Benitez, Deriving origin–destination data from a mobile phone network. IET Intell. Trans. Syst. 1(1), 15 (2007). https://doi.org/10.1049/iet-its:20060020

  6. C. Carpenter, M. Fowler, A.J. Adler, Generating route-specific origin–destination tables using bluetooth technology. Tran. Res. Rec.: J. Trans. Res. Board 2308(1), 96–102 (2012). https://doi.org/10.3141/2308-10

  7. A. De Palma, D. Rochat, Understanding individual travel decisions: results from a commuters survey in Geneva. Transportation 26(3), 263–281 (1999)

    Article  Google Scholar 

  8. Fellendorf, M., Vortisch, P.: Microscopic traffic flow simulator VISSIM, chap. 2, pp. 63–93. Springer (06 2011). https://doi.org/10.1007/978-1-4419-6142-6_2

  9. FGSV: Richtlinien für die Anlage von Straen (RAS) Teil: Querschnitte (RAS-Q). FGSV-Verlag, Kln (2006)

    Google Scholar 

  10. B. Heiden, M. Henn, M. Hinterhofer, O. Schechtner, K. Zelle, Endbericht emissionskataster graz 2001, erstellt im auftrag der steiermärkischen landesregierung (Informations-und Planungssysteme, Forschungsgesellschaft für Verbrennungskraftmaschinen und Thermodynamik mbH (FVT) und Arbeitsgemeinschaft für Dokumentations-Graz, 2008)

    Google Scholar 

  11. C. Hofer, G. Jäger, M. Füllsack, Including traffic jam avoidance in an agent-based network model. Comput. Soc. Netw. 5(1), 5 (2018)

    Google Scholar 

  12. C. Hofer, G. Jäger, M. Füllsack, Large scale simulation of co2 emissions caused by urban car traffic: an agent-based network approach. J. Clean. Prod. 183, 1–10 (2018)

    Article  Google Scholar 

  13. C. Hofer, M. Jger., Füllsack, Generating realistic road usage information and origin-destination data for traffic simulations: augmenting agent-based models with network techniques, in International Workshop on Complex Networks and their Applications. pp. 1223–1233. Springer (2017)

    Google Scholar 

  14. F. Höfler, Verkehrswesen-Praxis-Band 1: Verkehrsplanung (2004)

    Google Scholar 

  15. A. Horni, K. Nagel, K. Axhausen (eds.), The Multi-Agent Transport Simulation MATSim. (Ubiquity Press, 2016)

    Google Scholar 

  16. A. Infras, Handbuch emissionsfaktoren des straßenverkehrs version 3.1. Bern, Februar (2010)

    Google Scholar 

  17. A. Jamshidnejad, I. Papamichail, M. Papageorgiou, B. De Schutter, A mesoscopic integrated urban traffic flow-emission model. Trans. Res. Part C: Emer. Technol. 75, 45–83 (2017). https://doi.org/10.1016/j.trc.2016.11.024

  18. G. Kotusevski, K. Hawick, A review of traffic simulation software. Res. Lett. Inf. Math. Sci. 13 (2009)

    Google Scholar 

  19. M. Krzyzanowski, B. Kuna-Dibbert, J. Schneider (eds.), Health Effects of Transport-Related Air Pollution (World Health Organization, 2005)

    Google Scholar 

  20. A.N. Larijani, A.M. Olteanu-Raimond, J. Perret, M. Brédif, C. Ziemlicki, Investigating the mobile phone data to estimate the origin destination flow and analysis; case study: Paris region. Trans. Res. Procedia 6, 64–78 (2015). https://doi.org/10.1016/j.trpro.2015.03.006

    Article  Google Scholar 

  21. P.A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.P. Flötteröd, R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, E. Wießner, Microscopic traffic simulation using sumo, in The 21st IEEE International Conference on Intelligent Transportation Systems. IEEE (2018)

    Google Scholar 

  22. C. Nguyen, L. Soulhac, P. Salizzoni, Source apportionment and data assimilation in urban air quality modelling for NO2: The lyon case study. Atmosphere 9(1),  8 (2018). https://doi.org/10.3390/atmos9010008

  23. T. Nicolai, D. Carr, S. Weiland, H. Duhme, O. von Ehrenstein, C. Wagner, E. von Mutius, Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children. Eur. Respir. J. 21(6), 956–963 (2003). https://doi.org/10.1183/09031936.03.00041103a

  24. Open Street Map: Open street map (2019)

    Google Scholar 

  25. E. Parlament, E. Rat, Verordnung (eg) nr. 715/2007 des europäischen parlaments und des rates vom 20. juni 2007 über die typgenehmigung von kraftfahrzeugen hinsichtlich der emissionen von leichten personenkraftwagen und nutzfahrzeugen (euro 5 und euro 6) und über den zugang zu reparatur-und wartungsinformationen für fahrzeuge. Amtsblatt der Europäischen Union 29(6) (2007)

    Google Scholar 

  26. K. Pazdernik, M. Anderl, S. Haider, C. Lampert, L. Moosmann, M. Pinterits, S. Poupa, M. Purzner, C. Schmid, G. Schmidt et al., Austria National Inventory Report 2015-Submission Under the United Nations Framework Convention on Climate Change and the Kyoto Protocol (Umweltbundesamt GmbH, Vienna, 2015)

    Google Scholar 

  27. Statistik Austria: Registerzhlung 2011. Statistik Austria Pendlerstatistik (2011)

    Google Scholar 

  28. M. Thériault, M.H. Vandersmissen, M. Lee-Gosselin, D.F. Leroux, Modelling commuter trip length and duration within gis: Application to an od survey. J. Geogr. Inform. Dec. Anal. 3(1), 41–55 (1999)

    Google Scholar 

  29. E. Thonhofer, T. Palau, A. Kuhn, S. Jakubek, M. Kozek, Macroscopic traffic model for large scale urban traffic network design. Simul. Modell. Pract. Theory 80, 32–49 (2018). https://doi.org/10.1016/j.simpat.2017.09.007

  30. R. Tomschy, M. Herry, G. Sammer, R. Klementschitz, S. Riegler, R. Follmer, D. Gruschwitz, F. Josef, S. Gensasz, R. Kirnbauer, et al., Sterreich unterwegs 2013/2014: Ergebnisbericht zur sterreichweiten Mobilittserhebung sterreich unterwegs 2013/2014 (2016)

    Google Scholar 

  31. W.W. Verstraeten, K.F. Boersma, J. Douros, J.E. Williams, H. Eskes, F. Liu, S. Beirle, A. Delcloo, Top-down NOX emissions of european cities based on the downwind plume of modelled and space-borne tropospheric NO2 columns. Sensors 18(9),  2893 (2018). https://doi.org/10.3390/s18092893

  32. M. Weiss, P. Bonnel, R. Hummel, U. Manfredi, R. Colombo, G. Lanappe, P. Le Lijour, M. Sculati et al., Analyzing on-road emissions of light-duty vehicles with portable emission measurement systems (pems). JRC Sci. Tec. Rep., EUR 24697 (2011)

    Google Scholar 

  33. S. Zegeye, B. De Schutter, J. Hellendoorn, E. Breunesse, A. Hegyi, Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes. Trans. Res. Part C: Emer. Technol. 31, 158-171 (2013). https://doi.org/10.1016/j.trc.2013.01.002

  34. F.B. Zhan, C.E. Noon, Shortest path algorithms: an evaluation using real road networks. Trans. Sci. 32(1), 65–73 (1998)

    Article  Google Scholar 

  35. K. Zhang, S. Batterman, Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 450-451, 307–316 (2013). https://doi.org/10.1016/j.scitotenv.2013.01.074

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Jäger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plakolb, S., Jäger, G., Hofer, C., Füllsack, M. (2021). The Effect of Urban and Rural Mobility Behaviour on Congestion and Emissions Resulting from Private Motorized Traffic. In: Ahrweiler, P., Neumann, M. (eds) Advances in Social Simulation. ESSA 2019. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-61503-1_51

Download citation

Publish with us

Policies and ethics