Semantic Classifier Approach to Document Classification | SpringerLink
Skip to main content

Semantic Classifier Approach to Document Classification

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2020)

Abstract

We propose a new document classification method, bridging discrepancies (so-called semantic gap) between the training set and the application sets of textual data. We demonstrate its superiority over classical text classification approaches, including traditional classifier ensembles. The method consists of combining a document categorization technique with a single classifier or a classifier ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.nlm.nih.gov/mesh/.

References

  1. Aas, K., Eikvil, L.: Text categorisation: a survey. Report No. 941, June 1999

    Google Scholar 

  2. Bekkerman, R.: Automatic categorization of email into folders: benchmark experiments on enron and SRI corpora. Tech. rep, UMass CIIR (2004)

    Google Scholar 

  3. Borkowski, P.: Methods of semantic categorization in the task of text document analysis. Ph.D. thesis, Institute of Computer Science of Polish Academy of Sciences, Warsaw (2019, in Polish)

    Google Scholar 

  4. Chemudugunta, C., Holloway, A., Smyth, P., Steyvers, M.: Modeling documents by combining semantic concepts with unsupervised statistical learning. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 229–244. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_15

    Chapter  Google Scholar 

  5. Ciesielski, K., Borkowski, P., Kłopotek, M.A., Trojanowski, K., Wysocki, K.: Wikipedia-based document categorization. In: Bouvry, P., Kłopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka, A., Rybiński, H. (eds.) SIIS 2011. LNCS, vol. 7053, pp. 265–278. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25261-7_21

    Chapter  Google Scholar 

  6. Jacob, E.: Classification and categorization: a difference that makes a difference. Libr. Trends 52, 515–540 (2004)

    Google Scholar 

  7. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2, 285–318 (1988)

    Google Scholar 

  8. Medelyan, O., Witten, I.H., Milne, D.: Topic indexing with wikipedia. In: Proceedings of the First AAAI Workshop on Wikipedia and Artificial Intelligence (WIKIAI 2008) (2008)

    Google Scholar 

  9. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: Proceedings of CIKM 2007, Lisbon, Portugal, pp. 233–242. ACM (2007)

    Google Scholar 

  10. Milne, D., Witten, I.H.: An open-source toolkit for mining wikipedia. Artif. Intell. 194, 222–239 (2013)

    Article  MathSciNet  Google Scholar 

  11. Milne, D.N., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of CIKM 2008, pp. 509–518. ACM (2008)

    Google Scholar 

  12. Nguyen, C.T.: Bridging semantic gaps in information retrieval: context-based approaches. In: ACM VLDB 2010 (2010)

    Google Scholar 

  13. Rafi, M., Hassan, S., Shaikh, M.S.: Content-based text categorization using wikitology. CoRR abs/1208.3623 (2012)

    Google Scholar 

  14. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 Conference on EMNLP: Volume 1, EMNLP 2009, pp. 248–256. Association for Computational Linguistics (2009)

    Google Scholar 

  15. Ramakrishna Murty, M., Murthy, J., Prasad Reddy, P., Satapathy, S.: A survey of cross-domain text categorization techniques. In: RAIT 2012, pp. 499–504. IEEE (2012)

    Google Scholar 

  16. Sebastiani, F.: Machine learning in automated text categorization. ACM Comp. Surv. 34(1), 1–47 (2002)

    Article  Google Scholar 

  17. Sebastiani, F.: Text categorization. In: Text Mining and its Applications to Intelligence, CRM and Knowledge Management, pp. 109–129. WIT Press (2005)

    Google Scholar 

  18. Seppänen, J.K., Bingham, E., Mannila, H.: A simple algorithm for topic identification in 0–1 data. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 423–434. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39804-2_38

    Chapter  Google Scholar 

  19. Wang, P., Domeniconi, C., Hu, J.: Using wikipedia for co-clustering based cross-domain text classification. In: ICDM 2008, pp. 1085–1090. IEEE (2008)

    Google Scholar 

  20. Wróblewska, A., Sydow, M.: DEBORA: dependency-based method for extracting entity-relationship triples from open-domain texts in Polish. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS (LNAI), vol. 7661, pp. 155–161. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34624-8_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Borkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borkowski, P., Ciesielski, K., Kłopotek, M.A. (2020). Semantic Classifier Approach to Document Classification. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61401-0_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61400-3

  • Online ISBN: 978-3-030-61401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics