Ensemble of Binary Classifiers Combined Using Recurrent Correlation Associative Memories | SpringerLink
Skip to main content

Ensemble of Binary Classifiers Combined Using Recurrent Correlation Associative Memories

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

An ensemble method should cleverly combine a group of base classifiers to yield an improved classifier. The majority vote is an example of a methodology used to combine classifiers in an ensemble method. In this paper, we propose to combine classifiers using an associative memory model. Precisely, we introduce ensemble methods based on recurrent correlation associative memories (RCAMs) for binary classification problems. We show that an RCAM-based ensemble classifier can be viewed as a majority vote classifier whose weights depend on the similarity between the base classifiers and the resulting ensemble method. More precisely, the RCAM-based ensemble combines the classifiers using a recurrent consult and vote scheme. Furthermore, computational experiments confirm the potential application of the RCAM-based ensemble method for binary classification problems.

This work was supported in part by CNPq under grant no. 310118/2017-4, FAPESP under grant no. 2019/02278-2, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Austin, J.: ADAM: a distributed associative memory for scene analysis. In: Proceedings of the IEEE First International Conference on Neural Networks, vol. IV, p. 285. San Diego (1987)

    Google Scholar 

  2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1023/A:1018054314350

    Article  MATH  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  4. Burda, M.: Paircompviz: An R Package for Visualization of Multiple Pairwise Comparison Test Results (2013). https://doi.org/10.18129/B9.bioc.paircompviz

  5. Chiueh, T., Goodman, R.: Recurrent correlation associative memories. IEEE Trans. Neural Netw. 2, 275–284 (1991)

    Article  Google Scholar 

  6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Ferreira, A., Figueiredo, M.: Boosting algorithms: a review of methods, theory, and applications. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning: Methods and Applications, pp. 35–85. Springer (2012). https://doi.org/10.1007/978-1-4419-9326-7_2

  8. García, C., Moreno, J.A.: The hopfield associative memory network: improving performance with the kernel “Trick”. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 871–880. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30498-2_87

    Chapter  Google Scholar 

  9. García, C., Moreno, J.A.: The kernel hopfield memory network. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 755–764. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30479-1_78

    Chapter  Google Scholar 

  10. Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media (2019)

    Google Scholar 

  11. Hancock, E.R., Pelillo, M.: A Bayesian interpretation for the exponential correlation associative memory. Pattern Recogn. Lett. 19(2), 149–159 (1998)

    Article  Google Scholar 

  12. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990)

    Article  Google Scholar 

  13. Du, K.-L., Swamy, M.N.S.: Associative Memory Networks. Neural Networks and Statistical Learning. LNCS, pp. 201–229. Springer, London (2019). https://doi.org/10.1007/978-1-4471-7452-3_8

  14. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  15. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  16. Hopfield, J., Tank, D.: Neural computation of decisions in optimization problems. Biol. Cybern. 52, 141–152 (1985)

    MATH  Google Scholar 

  17. Jankowski, S., Lozowski, A., Zurada, J.: Complex-valued multi-state neural associative memory. IEEE Trans. Neural Netw. 7, 1491–1496 (1996)

    Article  Google Scholar 

  18. Kanter, I., Sompolinsky, H.: Associative recall of memory without errors. Phys. Rev. 35, 380–392 (1987)

    Article  Google Scholar 

  19. Kittler, J., Roli, F.: 2000 Proceedings of the Multiple Classifier Systems: First International Workshop, MCS 2000, Cagliari, Italy, June 21–23. Springer (2003)

    Google Scholar 

  20. Kobayashi, M.: Quaternionic Hopfield neural networks with twin-multistate activation function. Neurocomputing 267, 304–310 (2017). https://doi.org/10.1016/j.neucom.2017.06.013

    Article  Google Scholar 

  21. Kohonen, T.: Self-Organization and Associative Memory, 2rd edn. Springer, New York (1987)

    Google Scholar 

  22. Kultur, Y., Turhan, B., Bener, A.: Ensemble of neural networks with associative memory (ENNA) for estimating software development costs. Knowl.-Based Syst. 22(6), 395–402 (2009)

    Article  Google Scholar 

  23. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms, 2 edn. Wiley (2014)

    Google Scholar 

  24. McEliece, R.J., Posner, E.C., Rodemich, E.R., Venkatesh, S.: The capacity of the Hopfield associative memory. IEEE Trans. Inf. Theory 1, 33–45 (1987)

    MathSciNet  MATH  Google Scholar 

  25. Minemoto, T., Isokawa, T., Nishimura, H., Matsui, N.: Quaternionic multistate Hopfield neural network with extended projection rule. Artif. Life Robot. 21(1), 106–111 (2015). https://doi.org/10.1007/s10015-015-0247-4

    Article  Google Scholar 

  26. Müezzinoǧlu, M., Güzeliş, C., Zurada, J.: A new design method for the complex-valued multistate Hopfield associative memory. IEEE Trans. Neural Netw. 14(4), 891–899 (2003)

    Article  Google Scholar 

  27. Müezzinoǧlu, M., Güzelis, C., Zurada, J.: An energy function-based design method for discrete Hopfield associative memory with attractive fixed points. IEEE Trans. Neural Netw. 16(2), 370–378 (2005)

    Article  Google Scholar 

  28. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Perfetti, R., Ricci, E.: Recurrent correlation associative memories: a feature space perspective. IEEE Trans. Neural Netw. 19(2), 333–345 (2008)

    Article  Google Scholar 

  30. Polikar, R.: Ensemble learning. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning: Methods and Applications, pp. 1–34. Springer (2012). https://doi.org/10.1007/978-1-4419-9326-7_1

  31. Ponti Jr, M.P.: Combining classifiers: from the creation of ensembles to the decision fusion. In: 2011 24th SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials, pp. 1–10. IEEE (2011)

    Google Scholar 

  32. Serpen, G.: Hopfield network as static optimizer: learning the weights and eliminating the guesswork. Neural Process. Lett. 27(1), 1–15 (2008). https://doi.org/10.1007/s11063-007-9055-8

    Article  Google Scholar 

  33. Smith, K., Palaniswami, M., Krishnamoorthy, M.: Neural techniques for combinatorial optimization with applications. IEEE Trans. Neural Netw. 9(6), 1301–1318 (1998)

    Article  Google Scholar 

  34. Sun, Y.: Hopfield neural network based algorithms for image restoration and reconstruction II. Perform. Anal. IEEE Trans. Sign. Process. 48(7), 2119–2131 (2000). https://doi.org/10.1109/78.847795

    Article  MATH  Google Scholar 

  35. Van Erp, M., Vuurpijl, L., Schomaker, L.: An overview and comparison of voting methods for pattern recognition. In: Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 195–200. IEEE (2002)

    Google Scholar 

  36. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013). https://doi.org/10.1145/2641190.2641198

    Article  Google Scholar 

  37. Weise, T., Chiong, R.: An alternative way of presenting statistical test results when evaluating the performance of stochastic approaches. Neurocomputing 147, 235–238 (2015). https://doi.org/10.1016/j.neucom.2014.06.071

    Article  Google Scholar 

  38. Zhang, C., Ma, Y. (eds.): Ensemble Machine Learning: Methods and Applications. Springer (2012). https://doi.org/10.1007/978-1-4419-9326-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Anibal Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lobo, R.A., Valle, M.E. (2020). Ensemble of Binary Classifiers Combined Using Recurrent Correlation Associative Memories. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12320. Springer, Cham. https://doi.org/10.1007/978-3-030-61380-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61380-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61379-2

  • Online ISBN: 978-3-030-61380-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics