Three-Layer Dynamic Transfer Learning Language Model for E. Coli Promoter Classification | SpringerLink
Skip to main content

Three-Layer Dynamic Transfer Learning Language Model for E. Coli Promoter Classification

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

  • 968 Accesses

Abstract

Classification of functional genomic regions (such as promoters or enhancers) based on sequence data alone is a very important problem. Various data mining algorithms can be used well to apply to predict the promoter region. For example, association and clustering algorithms like Classification And Regression Tree (CART), machine learning algorithms like Simple Logistic, BayesNet, Random forest, or the most popular deep learning like Recurrent Neural Network (RNN), Convolutional Neural Networks (CNN). However, due to large amount of genetic data are unlabeled, these methods cannot directly solve this challenge. Therefore, we present a three-layer dynamic transfer learning language model (TLDTLL) for E. coli promoter classification problems. TLDTLL is an effective algorithm for inductive transfer learning that utilizes pre-training on large unlabeled genomic corpuses. This is particularly advantageous in the context of genomics data, which tends to contain significant volumes of unlabeled data. TLDTLL shows improved results over existing methods for classification of E. coli promoters using only sequence data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, D.-S.: Systematic Theory of Neural Networks for Pattern Recognition. Publishing House of Electronic Industry of China, Beijing, vol. 201 (1996)

    Google Scholar 

  2. Huang, D.-S., Zhao, X.-M., Huang, G.-B., Cheung, Y.-M.: Classifying protein sequences using hydropathy blocks. Pattern Recogn. 39, 2293–2300 (2006)

    Article  Google Scholar 

  3. Umarov, R., Kuwahara, H., Li, Y., Gao, X., Solovyev, V.: Promid: human promoter prediction by deep learning (2018). arXiv preprint arXiv:1810.01414

  4. Zhu, L., Guo, W.-L., Deng, S.-P., Huang, D.-S.: ChIP-PIT: Enhancing the analysis of ChIP-Seq data using convex-relaxed pair-wise interaction tensor decomposition. IEEE/ACM Trans. Comput. Biol. Bioinf. 13, 55–63 (2015)

    Article  Google Scholar 

  5. Huang, D.-S.: Radial basis probabilistic neural networks: Model and application. Int. J. Pattern Recogn. Artif. Intell. 13, 1083–1101 (1999)

    Article  Google Scholar 

  6. Huang, D.-S., Huang, X.: Improved performance in protein secondary structure prediction by combining multiple predictions. Protein Pept. Lett. 13, 985–991 (2006)

    Article  MathSciNet  Google Scholar 

  7. Huang, D.-S., Zheng, C.-H.: Independent component analysis-based penalized discriminant method for tumor classification using gene expression data. Bioinformatics 22, 1855–1862 (2006)

    Article  Google Scholar 

  8. Huang, D.-S., Du, J.-X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Networks 19, 2099–2115 (2008)

    Article  Google Scholar 

  9. Zheng, C.-H., Huang, D.-S., Zhang, L., Kong, X.-Z.: Tumor clustering using nonnegative matrix factorization with gene selection. IEEE Trans. Inf. Technol. Biomed. 13, 599–607 (2009)

    Article  Google Scholar 

  10. Xia, J.-F., Zhao, X.-M., Song, J., Huang, D.-S.: APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinf. 11, 174 (2010)

    Article  Google Scholar 

  11. Zheng, C.-H., Zhang, L., Ng, V.T.-Y., Shiu, C.K., Huang, D.-S.: Molecular pattern discovery based on penalized matrix decomposition. IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 1592–1603 (2011)

    Article  Google Scholar 

  12. Huang, D.-S., Jiang, W.: A general CPL-AdS methodology for fixing dynamic parameters in dual environments. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42, 1489–1500 (2012)

    Article  Google Scholar 

  13. Deng, S.-P., Huang, D.-S.: SFAPS: An R package for structure/function analysis of protein sequences based on informational spectrum method. Methods 69, 207–212 (2014)

    Article  Google Scholar 

  14. Huang, D.-S., Yu, H.-J.: Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans. Comput. Biol. Bioinf. 10, 457–467 (2013)

    Article  Google Scholar 

  15. Zhu, L., You, Z.-H., Huang, D.-S., Wang, B.: t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. PLoS One 8, e58368 (2013)

    Article  Google Scholar 

  16. Deng, S.-P., Zhu, L., Huang, D.-S.: Mining the bladder cancer-associated genes by an integrated strategy for the construction and analysis of differential co-expression networks. BMC Genomics 16(Suppl 3), S4 (2015)

    Article  Google Scholar 

  17. Deng, S.-P., Zhu, L., Huang, D.-S.: Predicting hub genes associated with cervical cancer through gene co-expression networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 13, 27–35 (2015)

    Article  Google Scholar 

  18. Zhu, L., Deng, S.-P., Huang, D.-S.: A two-stage geometric method for pruning unreliable links in protein-protein networks. IEEE Trans. Nanobiosci. 14, 528–534 (2015)

    Article  Google Scholar 

  19. Shen, Z., Bao, W., Huang, D.-S.: Recurrent neural network for predicting transcription factor binding sites. Sci. Rep. 8, 1–10 (2018)

    Article  Google Scholar 

  20. Umarov, R.K., Solovyev, V.V.: Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One 12, e0171410 (2017)

    Article  Google Scholar 

  21. Min, X., Zeng, W., Chen, S., Chen, N., Chen, T., Jiang, R.: Predicting enhancers with deep convolutional neural networks. BMC Bioinf. 18, 478 (2017)

    Article  Google Scholar 

  22. Yang, B., et al.: BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics 33, 1930–1936 (2017)

    Article  Google Scholar 

  23. Cohn, D., Zuk, O., Kaplan, T.: Enhancer identification using transfer and adversarial deep learning of DNA sequences. BioRxiv 264200 (2018)

    Google Scholar 

  24. Liu, F., Li, H., Ren, C., Bo, X., Shu, W.: PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep. 6, 28517 (2016)

    Article  Google Scholar 

  25. Zeng, W., Wu, M., Jiang, R.: Prediction of enhancer-promoter interactions via natural language processing. BMC Genom. 19, 84 (2018)

    Article  Google Scholar 

  26. Chuai, G., et al.: DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. 19, 80 (2018)

    Article  Google Scholar 

  27. Fiannaca, A., et al.: Deep learning models for bacteria taxonomic classification of metagenomic data. BMC Bioinf. 19, 198 (2018)

    Article  Google Scholar 

  28. Plekhanova, E., Nuzhdin, S.V., Utkin, L.V., Samsonova, M.G.: Prediction of deleterious mutations in coding regions of mammals with transfer learning. Evol. Appl. 12, 18–28 (2019)

    Article  Google Scholar 

  29. Baek, J., Lee, B., Kwon, S., Yoon, S.: Lncrnanet: long non-coding rna identification using deep learning. Bioinformatics 34, 3889–3897 (2018)

    Article  Google Scholar 

  30. Trabelsi, A., Chaabane, M., Ben-Hur, A.: Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities. Bioinformatics 35, i269–i277 (2019)

    Article  Google Scholar 

  31. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20, 30–42 (2011)

    Article  Google Scholar 

  32. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2009)

    Article  Google Scholar 

  33. Trieschnigg, D., Kraaij, W., de Jong, F.: The influence of basic tokenization on biomedical document retrieval. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 803–804 (2007)

    Google Scholar 

  34. Jiang, J., Zhai, C.: An empirical study of tokenization strategies for biomedical information retrieval. Inf. Retrieval 10, 341–363 (2007)

    Article  Google Scholar 

  35. Chikhi, R., Medvedev, P.: Informed and automated k-mer size selection for genome assembly. Bioinformatics 30, 31–37 (2014)

    Article  Google Scholar 

  36. Ghandi, M., Lee, D., Mohammad-Noori, M., Beer, M.A.: Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput. Biol. 10, e1003711 (2014)

    Article  Google Scholar 

  37. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M.: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017)

    Article  Google Scholar 

  38. Sherry, S.T., et al.: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001)

    Article  Google Scholar 

  39. www.ncbi.nlm.nih.gov/genome/?term=escherichia%20coli

Download references

Acknowledgement

This work was supported by the grant of National Key R&D Program of China (No. 2018YFA0902600 & 2018AAA0100100) and partly supported by National Natural Science Foundation of China (Grant nos. 61520106006, 61861146002, 61702371, 61932008, 61732012, 61772370, 61532008, 61672382, 61772357, and 61672203) and China Postdoctoral Science Foundation (Grant no. 2017M611619) and supported by “BAGUI Scholar” Program and the Scientific & Technological Base and Talent Special Program, GuiKe AD18126015 of the Guangxi Zhuang Autonomous Region of China and supported by Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01), LCNBI and ZJLab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y. et al. (2020). Three-Layer Dynamic Transfer Learning Language Model for E. Coli Promoter Classification. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics