Abstract
In recent years, aspect-based sentiment analysis has attracted the attention of many researchers with its wide range of application scenarios. Existing methods for fine-grained sentiment analysis usually explicitly model the relations between aspects and contexts. In this paper, we tackle the task as sentence pair classification. We build our model based on pre-trained language models (LM) due to their strong ability in modeling semantic information. Besides, in order to further enhance the performance, we apply weighted voting strategy to combine the multiple results of different models in a heuristic way. We participated in NLPCC-2020 shared task on Multi-Aspect-based Multi-Sentiment Analysis (MAMS) and won the first place in terms of two sub-tasks, indicating the effectiveness of the approaches adopted.
F. Zhou and L. Yang—Both authors contributed equally to this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In: 10th International Workshop on Semantic Evaluation (SemEval 2016) (2016)
Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural network for target-dependent Twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 49–54 (2014)
Tang, D., Qin, B., Feng, X., Liu, T.: Effective LSTMs for target-dependent sentiment classification. In: Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers, pp. 3298–3307 (2016)
Ma, D., Li, S., Zhang, X., Wang, H.: Interactive attention networks for aspect-level sentiment classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 4068–4074 (2017)
Xue, W., Li, T.: Aspect based sentiment analysis with gated convolutional networks. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2514–2523 (2018)
Xue, W., Zhou, W., Li, T., Wang, Q.: MTNA: a neural multi-task model for aspect category classification and aspect term extraction on restaurant reviews. In: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 151–156 (2017)
He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: An interactive multi-task learning network for end-to-end aspect-based sentiment analysis. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 504–515 (2019)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186 (2019)
Sun, Y., et al.: Ernie 2.0: a continual pre-training framework for language understanding. arXiv preprint arXiv:1907.12412 (2019)
Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, pp. 5754–5764 (2019)
Li, X., Bing, L., Zhang, W., Lam, W.: Exploiting BERT for end-to-end aspect-based sentiment analysis. arXiv preprint arXiv:1910.00883 (2019)
Sun, C., Huang, L., Qiu, X.: Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 380–385 (2019)
Xu, H., Liu, B., Shu, L., Yu, P.S.: Bert post-training for review reading comprehension and aspect-based sentiment analysis. arXiv preprint arXiv:1904.02232 (2019)
Jiang, Q., Chen, L., Xu, R., Ao, X., Yang, M.: A challenge dataset and effective models for aspect-based sentiment analysis. In: EMNLP-IJCNLP, pp. 6281–6286 (2019)
Wang, K., Shen, W., Yang, Y., Quan, X., Wang, R.: Relational graph attention network for aspect-based sentiment analysis. arXiv preprint arXiv:2004.12362 (2020)
Tang, H., Ji, D., Li, C., Zhou, Q.: Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6578–6588 (2020)
Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Acknowledgements
This work is supported by a grant from the National Key Research and Development Program of China (No. 2018YFC0832101), the Natural Science Foundation of China (No. 61702080, 61632011, 61806038, 61976036), the Fundamental Research Funds for the Central Universities (No. DUT19RC(4)016), and Postdoctoral Science Foundation of China (2018M631788).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, F., Zhang, J., Peng, T., Yang, L., Lin, H. (2020). Weighted Pre-trained Language Models for Multi-Aspect-Based Multi-Sentiment Analysis. In: Zhu, X., Zhang, M., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2020. Lecture Notes in Computer Science(), vol 12431. Springer, Cham. https://doi.org/10.1007/978-3-030-60457-8_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-60457-8_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60456-1
Online ISBN: 978-3-030-60457-8
eBook Packages: Computer ScienceComputer Science (R0)