Abstract
This paper introduces a system of tactile transmission on the tip of index finger and reports the effect of skin deformation force and vibration on the friction sensation of the material. There are two sides for the system: tactile-sender and tactile-receiver. We used a force sensor to measure the dynamic friction of a material at the tactile sender side. Due to the amplitude of stick-slip vibration is very small and impossible to measure by the current force sensor, we attempted to investigate the effect of a sinewave form vibration that we processed by a computer software. A wearable stick-slip display with a cylindrical shape contactor was developed for the tactile-receiver side. Contactor is directly attached to a shaft of a DC motor. It was confirmed that, the DC motor can provide high fidelity vibration sensation, therefore, the contactor can present both skin deformation and stick-slip vibration. Experiment’s result showed that, the intensity of friction sensation of the participants did not proportional to the friction measured by a force senor. We considered that it was because the friction coefficient of the material attached to the end of the force sensor was different to that of human skin. Moreover, the result showed that, participants adjusted the strength of skin deformation stimulated by the tactile device stronger to perceive more similar to the rubbing sensation of a real material that has higher stickiness perception. We also confirmed that higher frequency of vibration affected the perception of slippery.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tachi, S.: Telexistence: enabling humans to be virtually ubiquitous. IEEE Comput. Graph. Appl. 36(1), 8–14 (2016)
Konyo, M., Yamada, H., Okamoto, S., Tadokoro, S.: Alternative display of friction represented by tactile stimulation without tangential force. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 619–629. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69057-3_79
Poupyrev, I., Maruyama, S., Rekimoto, J.: Ambient touch: designing tactile interfaces for handheld devices. In: Proc. ACM UIST, pp. 51–60 (2002)
Culbertson, H., Romano, J., Castillo, P., Mintz, M., Kuchenbecker, K.J.: Refined methods for creating realistic haptic virtual textures from tool-mediated contact acceleration data. In: Departmental Papers (MEAM), p. 284 (2012)
Minamizawa, K., et al.: Gravity grabber: wearable haptic display to present virtual mass sensation. In: Proc. ACM SIGGRAPH Etech (2007)
Leonardis, D., et al.: A wearable fingertip haptic device with 3 DoF asymmetric 3-RSR kinematics. In: Proc. IEEE World Haptics Conf., pp. 388–393 (2015)
Tsetserukou, D., et al.: LinkTouch: a wearable haptic device with five-bar linkage mecha-nism for presentation of two-DOF force feedback at the fingerpad. In: Proc. IEEE Haptics Symp., pp. 307–312 (2014)
Yem, V., Kajimo, H.: Wearable tactile device using mechanical and electrical stimulation for fingertip interaction with virtual world. In: Proc. IEEE Virtual Reality (VR), pp. 99–104 (2017)
Acknowledgement
This research was supported by JSPS KAKENHI Grant Number JP19K20325 and KEISYA KAKNHI.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Haramo, H., Yem, V., Ikei, Y. (2020). Transmission of Rubbing Sensation with Wearable Stick-Slip Display and Force Sensor. In: Stephanidis, C., Kurosu, M., Degen, H., Reinerman-Jones, L. (eds) HCI International 2020 - Late Breaking Papers: Multimodality and Intelligence. HCII 2020. Lecture Notes in Computer Science(), vol 12424. Springer, Cham. https://doi.org/10.1007/978-3-030-60117-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-60117-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60116-4
Online ISBN: 978-3-030-60117-1
eBook Packages: Computer ScienceComputer Science (R0)