Spatial Semantic-Preserving Latent Space Learning for Accelerated DWI Diagnostic Report Generation | SpringerLink
Skip to main content

Spatial Semantic-Preserving Latent Space Learning for Accelerated DWI Diagnostic Report Generation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

Abstract

In light of recent works exploring automated pathological diagnosis, studies have also shown that medical text reports can be generated with varying levels of efficacy. Brain diffusion-weighted MRI (DWI) has been used for the diagnosis of ischaemia in which brain death can follow in immediate hours. It is therefore of the utmost importance to obtain ischaemic brain diagnosis as soon as possible in a clinical setting. Previous studies have shown that MRI acquisition can be accelerated using variable-density Cartesian undersampling methods. In this study, we propose an accelerated DWI acquisition pipeline for the purpose of generating text reports containing diagnostic information. We demonstrate that we can learn a semantic-preserving latent space for minor as well as extremely undersampled MR images capable of achieving promising results on a diagnostic report generation task.

A. Gasimova and G. Seegoolam—Both authors contributed equally to this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L., Bentley, P., Rueckert, D.: Fully automatic acute ischemic lesion segmentation in dwi using convolutional neural networks. NeuroImage: Clinical 15, 633–643 (2017)

    Google Scholar 

  2. Ciritsis, A., Rossi, C., Marcon, M., Van, V.D.P., Boss, A.: Accelerated diffusion-weighted imaging for lymph node assessment in the pelvis applying simultaneous multislice acquisition: a healthy volunteer study. Medicine 97(32), e11745 (2018)

    Google Scholar 

  3. Gasimova, A.: Automated enriched medical concept generation for chest X-ray images. In: Suzuki, K., et al. (eds.) ML-CDS/IMIMIC -2019. LNCS, vol. 11797, pp. 83–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33850-3_10

    Chapter  Google Scholar 

  4. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (grappa). Magnetic Resonance Med. Official J. Int. Soc. Magnetic Resonance Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  5. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magnetic Resonance Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  7. Jing, B., Xie, P., Xing, E.: On the automatic generation of medical imaging reports. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2577–2586 (2018)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Lin, C.Y., Hovy, E.: Automatic evaluation of summaries using n-gram co-occurrence statistics. In: Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, pp. 150–157 (2003)

    Google Scholar 

  10. Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., Yuille, A.: Deep captioning with multimodal recurrent neural networks (M-RNN). In: ICLR (2015)

    Google Scholar 

  11. Merrem, A., et al.: Rapid diffusion-weighted magnetic resonance imaging of the brain without susceptibility artifacts: single-shot steam with radial undersampling and iterative reconstruction. Investigative Radiol. 52(7), 428–433 (2017)

    Article  Google Scholar 

  12. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. pp. 311–318. Association for Computational Linguistics (2002)

    Google Scholar 

  13. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magnetic Resonance Med. Official J. Int. Soc. Magnetic Resonance Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  14. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imag. 38(1), 280–290 (2018)

    Article  Google Scholar 

  15. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imag. 37(2), 491–503 (2017)

    Article  Google Scholar 

  16. Schlemper, J., et al.: Cardiac MR segmentation from undersampled k-space using deep latent representation learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 259–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_30

    Chapter  Google Scholar 

  17. Seegoolam, G., Schlemper, J., Qin, C., Price, A., Hajnal, J., Rueckert, D.: Exploiting motion for deep learning reconstruction of extremely-undersampled dynamic MRI. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 704–712. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_77

    Chapter  Google Scholar 

  18. Shin, H.C., Roberts, K., Lu, L., Demner-Fushman, D., Yao, J., Summers, R.M.: Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2497–2506 (2016)

    Google Scholar 

  19. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3156–3164. IEEE (2015)

    Google Scholar 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  21. Weiss, J., et al.: Feasibility of accelerated simultaneous multislice diffusion-weighted MRI of the prostate. J. Magnetic Resonance Imag. 46(5), 1507–1515 (2017)

    Article  Google Scholar 

  22. Wu, W., Miller, K.L.: Image formation in diffusion MRI: a review of recent technical developments. J. Magnetic Resonance Imag. 46(3), 646–662 (2017)

    Article  Google Scholar 

  23. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

    Google Scholar 

  24. Xue, Y., et al.: Multimodal recurrent model with attention for automated radiology report generation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 457–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_52

    Chapter  Google Scholar 

  25. Yuan, J., Liao, H., Luo, R., Luo, J.: Automatic radiology report generation based on multi-view image fusion and medical concept enrichment. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 721–729. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_80

    Chapter  Google Scholar 

  26. Zhang, Z., Xie, Y., Xing, F., McGough, M., Yang, L.: Mdnet: a semantically and visually interpretable medical image diagnosis network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6428–6436 (2017)

    Google Scholar 

  27. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydan Gasimova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gasimova, A., Seegoolam, G., Chen, L., Bentley, P., Rueckert, D. (2020). Spatial Semantic-Preserving Latent Space Learning for Accelerated DWI Diagnostic Report Generation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics