Abstract
In light of recent works exploring automated pathological diagnosis, studies have also shown that medical text reports can be generated with varying levels of efficacy. Brain diffusion-weighted MRI (DWI) has been used for the diagnosis of ischaemia in which brain death can follow in immediate hours. It is therefore of the utmost importance to obtain ischaemic brain diagnosis as soon as possible in a clinical setting. Previous studies have shown that MRI acquisition can be accelerated using variable-density Cartesian undersampling methods. In this study, we propose an accelerated DWI acquisition pipeline for the purpose of generating text reports containing diagnostic information. We demonstrate that we can learn a semantic-preserving latent space for minor as well as extremely undersampled MR images capable of achieving promising results on a diagnostic report generation task.
A. Gasimova and G. Seegoolam—Both authors contributed equally to this study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, L., Bentley, P., Rueckert, D.: Fully automatic acute ischemic lesion segmentation in dwi using convolutional neural networks. NeuroImage: Clinical 15, 633–643 (2017)
Ciritsis, A., Rossi, C., Marcon, M., Van, V.D.P., Boss, A.: Accelerated diffusion-weighted imaging for lymph node assessment in the pelvis applying simultaneous multislice acquisition: a healthy volunteer study. Medicine 97(32), e11745 (2018)
Gasimova, A.: Automated enriched medical concept generation for chest X-ray images. In: Suzuki, K., et al. (eds.) ML-CDS/IMIMIC -2019. LNCS, vol. 11797, pp. 83–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33850-3_10
Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (grappa). Magnetic Resonance Med. Official J. Int. Soc. Magnetic Resonance Med. 47(6), 1202–1210 (2002)
Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magnetic Resonance Med. 79(6), 3055–3071 (2018)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Jing, B., Xie, P., Xing, E.: On the automatic generation of medical imaging reports. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2577–2586 (2018)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lin, C.Y., Hovy, E.: Automatic evaluation of summaries using n-gram co-occurrence statistics. In: Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, pp. 150–157 (2003)
Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., Yuille, A.: Deep captioning with multimodal recurrent neural networks (M-RNN). In: ICLR (2015)
Merrem, A., et al.: Rapid diffusion-weighted magnetic resonance imaging of the brain without susceptibility artifacts: single-shot steam with radial undersampling and iterative reconstruction. Investigative Radiol. 52(7), 428–433 (2017)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. pp. 311–318. Association for Computational Linguistics (2002)
Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magnetic Resonance Med. Official J. Int. Soc. Magnetic Resonance Med. 42(5), 952–962 (1999)
Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imag. 38(1), 280–290 (2018)
Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imag. 37(2), 491–503 (2017)
Schlemper, J., et al.: Cardiac MR segmentation from undersampled k-space using deep latent representation learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 259–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_30
Seegoolam, G., Schlemper, J., Qin, C., Price, A., Hajnal, J., Rueckert, D.: Exploiting motion for deep learning reconstruction of extremely-undersampled dynamic MRI. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 704–712. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_77
Shin, H.C., Roberts, K., Lu, L., Demner-Fushman, D., Yao, J., Summers, R.M.: Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2497–2506 (2016)
Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3156–3164. IEEE (2015)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Weiss, J., et al.: Feasibility of accelerated simultaneous multislice diffusion-weighted MRI of the prostate. J. Magnetic Resonance Imag. 46(5), 1507–1515 (2017)
Wu, W., Miller, K.L.: Image formation in diffusion MRI: a review of recent technical developments. J. Magnetic Resonance Imag. 46(3), 646–662 (2017)
Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)
Xue, Y., et al.: Multimodal recurrent model with attention for automated radiology report generation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 457–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_52
Yuan, J., Liao, H., Luo, R., Luo, J.: Automatic radiology report generation based on multi-view image fusion and medical concept enrichment. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 721–729. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_80
Zhang, Z., Xie, Y., Xing, F., McGough, M., Yang, L.: Mdnet: a semantically and visually interpretable medical image diagnosis network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6428–6436 (2017)
Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Gasimova, A., Seegoolam, G., Chen, L., Bentley, P., Rueckert, D. (2020). Spatial Semantic-Preserving Latent Space Learning for Accelerated DWI Diagnostic Report Generation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-59728-3_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59727-6
Online ISBN: 978-3-030-59728-3
eBook Packages: Computer ScienceComputer Science (R0)