Estimating Tissue Microstructure with Undersampled Diffusion Data via Graph Convolutional Neural Networks | SpringerLink
Skip to main content

Estimating Tissue Microstructure with Undersampled Diffusion Data via Graph Convolutional Neural Networks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Advanced diffusion models for tissue microstructure are widely employed to study brain disorders. However, these models usually require diffusion MRI (DMRI) data with densely sampled q-space, which is prohibitive in clinical settings. This problem can be resolved by using deep learning techniques, which learn the mapping between sparsely sampled q-space data and the high-quality diffusion microstructural indices estimated from densely sampled data. However, most existing methods simply view the input DMRI data as a vector without considering data structure in the q-space. In this paper, we propose to overcome this limitation by representing DMRI data using graphs and utilizing graph convolutional neural networks to estimate tissue microstructure. Our method makes full use of the q-space angular neighboring information to improve estimation accuracy. Experimental results based on data from the Baby Connectome Project demonstrate that our method outperforms state-of-the-art methods both qualitatively and quantitatively.

This work was supported in part by NIH grants (NS093842, EB006733, MH104324, and MH110274) and the efforts of the UNC/UMN Baby Connectome Project Consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hagmann, P., Jonasson, L., Maeder, P., Thiran, J.P., Wedeen, V.J., Meuli, R.: Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26, S205–S223 (2006)

    Article  Google Scholar 

  2. Jones, D.K.: Diffusion MRI. Oxford University Press, Oxford (2010)

    Google Scholar 

  3. Johansen-Berg, H., Behrens, T.E.: Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press (2013)

    Google Scholar 

  4. Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magnetic Resonance Med. 53(6), 1432–1440 (2005)

    Article  Google Scholar 

  5. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

  6. Kaden, E., Kruggel, F., Alexander, D.C.: Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magnetic Resonance Med. 75(4), 1752–1763 (2016)

    Article  Google Scholar 

  7. Huynh, K.M., et al.: Characterizing non-gaussian diffusion in heterogeneously oriented tissue microenvironments. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 556–563. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_62

    Chapter  Google Scholar 

  8. Huynh, K.M., et al.: Probing tissue microarchitecture of the baby brain via spherical mean spectrum imaging. IEEE Trans. Med. Imag. (2020)

    Google Scholar 

  9. Golkov, V., et al.: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imag. 35(5), 1344–1351 (2016)

    Article  Google Scholar 

  10. Ye, C.: Tissue microstructure estimation using a deep network inspired by a dictionary-based framework. Med. Image Anal. 42, 288–299 (2017)

    Article  Google Scholar 

  11. Li, Z., et al.: Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network. IEEE Access 7, 71398–71411 (2019)

    Article  Google Scholar 

  12. Ye, C., Li, X., Chen, J.: A deep network for tissue microstructure estimation using modified LSTM units. Med. Image Anal. 55, 49–64 (2019)

    Article  Google Scholar 

  13. Gibbons, E.K., et al.: Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning. Magnetic Resonance Med. 81(4), 2399–2411 (2019)

    Article  Google Scholar 

  14. Ye, C., et al.: Super-resolved q-space deep learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 582–589. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_65

    Chapter  Google Scholar 

  15. Ye, C., Li, Y., Zeng, X.: An improved deep network for tissue microstructure estimation with uncertainty quantification. Med. Image Anal. 61, 101650 (2020)

    Article  Google Scholar 

  16. Fallik, D.: The human connectome project turns to mapping brain development, from birth through early childhood. Neurol. Today 16(19), 7–8 (2016)

    Article  Google Scholar 

  17. Howell, B.R., et al.: The UNC/UMN baby connectome project (BCP): an overview of the study design and protocol development. NeuroImage 185, 891–905 (2019)

    Article  Google Scholar 

  18. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  19. Kim, J., Hong, Y., Chen, G., Lin, W., Yap, P.-T., Shen, D.: Graph-based deep learning for prediction of longitudinal infant diffusion MRI Data. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C.M.W. (eds.) MICCAI 2019. MV, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05831-9_11

    Chapter  Google Scholar 

  20. Hong, Y., Chen, G., Yap, P.-T., Shen, D.: Multifold acceleration of diffusion MRI via deep learning reconstruction from slice-undersampled data. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 530–541. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_41

    Chapter  Google Scholar 

  21. Hong, Y., Kim, J., Chen, G., Lin, W., Yap, P.T., Shen, D.: Longitudinal prediction of infant diffusion MRI data via graph convolutional adversarial networks. IEEE Transactions on Medical Imaging (2019)

    Google Scholar 

  22. Hong, Y., Chen, G., Yap, P.T., Shen, D.: Reconstructing high-quality diffusion MRI data from orthogonal slice-undersampled data using graph convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 529–537 (2019)

    Google Scholar 

  23. Chen, G., Dong, B., Zhang, Y., Lin, W., Shen, D., Yap, P.T.: Denoising of infant diffusion MRI data via graph framelet matching in x-q space. IEEE Transactions on Medical Imaging (2019)

    Google Scholar 

  24. Chen, G., Wu, Y., Shen, D., Yap, P.T.: Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space. Med. Image Anal. 53, 79–94 (2019)

    Article  Google Scholar 

  25. Chen, G., Dong, B., Zhang, Y., Lin, W., Shen, D., Yap, P.T.: XQ-SR: joint x-q space super-resolution with application to infant diffusion MRI. Med. Image Anal. 57, 44–55 (2019)

    Article  Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  27. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  28. Sone, D.: Neurite orientation and dispersion density imaging: clinical utility, efficacy, and role in therapy. Reports Med. Imag. 12, 17 (2019)

    Article  Google Scholar 

  29. Daducci, A., Canales-Rodríguez, E.J., Zhang, H., Dyrby, T.B., Alexander, D.C., Thiran, J.P.: Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data. NeuroImage 105, 32–44 (2015)

    Article  Google Scholar 

  30. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). pp. 265–283 (2016)

    Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  32. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. NeuroImage, 80 62–79 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Pew-Thian Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, G. et al. (2020). Estimating Tissue Microstructure with Undersampled Diffusion Data via Graph Convolutional Neural Networks. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics