Feature-Enhanced Graph Networks for Genetic Mutational Prediction Using Histopathological Images in Colon Cancer | SpringerLink
Skip to main content

Feature-Enhanced Graph Networks for Genetic Mutational Prediction Using Histopathological Images in Colon Cancer

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Mining histopathological and genetic data provides a unique avenue to deepen our understanding of cancer biology. However, extensive cancer heterogeneity across image- and molecular-scales poses technical challenges for feature extraction and outcome prediction. In this study, we propose a feature-enhanced graph network (FENet) for genetic mutation prediction using histopathological images in colon cancer. Unlike conventional approaches analyzing patch-based feature alone without considering their spatial connectivity, we seek to link and explore non-isomorphic topological structures in histopathological images. Our FENet incorporates feature enhancement in convolutional graph neural networks to aggregate discriminative features for capturing gene mutation status. Specifically, our approach could identify both local patch feature information and global topological structure in histopathological images simultaneously. Furthermore, we introduced an ensemble strategy by constructing multiple subgraphs to boost the prediction performance. Extensive experiments on the TCGA-COAD and TCGA-READ cohort including both histopathological images and three key genes’ mutation profiles (APC, KRAS, and TP53) demonstrated the superiority of FENet for key mutational outcome prediction in colon cancer.

This study has been partially supported by fund of STCSM (19511121400).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mármol, I., Sánchez-de-Diego, C., Pradilla, D.A.: Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci. 18, 197 (2017)

    Article  Google Scholar 

  2. Bray, F.: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    Article  Google Scholar 

  3. Iacopetta, B.: TP53 mutation in colorectal cancer. In: Human Mutation (2003)

    Google Scholar 

  4. Armaghany, T., Wilson, J.D., Chu, Q., Mills, G.: Genetic alterations in colorectal cancer. Gastrointest. Cancer Res. 5, 19–27 (2012)

    Google Scholar 

  5. Jancik, S., Drabek, J., Radzioch, D., Hajduch, M.: Clinical relevance of KRAS in human cancers. J. Biomed. Biotechnol. 2010, 150960 (2010)

    Article  Google Scholar 

  6. Fodde, R.: The APC gene in colorectal cancer. Eur. J. Cancer 38(7), 867–71 (2002)

    Article  Google Scholar 

  7. Kather, J.N.: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019)

    Article  Google Scholar 

  8. Coudray, N., et al.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24(10), 1559–1567 (2018)

    Article  Google Scholar 

  9. Li, Z., Zhang, X., Muller, H., Zhang, S.: Large-scale retrieval for medical image analytics: a comprehensive review. Med. Image Anal. 43, 66–84 (2018)

    Article  Google Scholar 

  10. Ghaznavi, F., Evans, A., Madabhushi, A., Feldman, M.: Digital imaging in pathology: whole-slide imaging and beyond. Annu. Rev. Pathol. 8, 331–359 (2013)

    Article  Google Scholar 

  11. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Nat. Acad. Sci. U.S.A. 115, E2970–E2979 (2018)

    Article  Google Scholar 

  12. Zhang, X., Su, H., Yang, L., Zhang, S.: Fine-grained histopathological image analysis via robust segmentation and large-scale retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  13. Duan, Q., et al.: SenseCare: a research platform for medical image informatics and interactive 3D visualization. https://arxiv.org/abs/2004.07031

  14. Heindl, A., Nawaz, S., Yuan, Y.: Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology. Lab. Investig. 95, 377–384 (2015)

    Article  Google Scholar 

  15. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Neural Information Processing Systems (2017)

    Google Scholar 

  16. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In International Conference on Learning Representations (2018)

    Google Scholar 

  17. Xu, K, Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  18. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph

    Google Scholar 

  19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2016)

    Google Scholar 

  20. Ioffe, S., et al.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (2015)

    Google Scholar 

  21. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning (2018)

    Google Scholar 

  22. Kirk, S., et al.: Radiology data from the cancer genome atlas colon adenocarcinoma [TCGA-COAD] collection. In: The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.HJJHBOXZ

  23. Cbioportal Homepage. https://www.cbioportal.org/

  24. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: Proceedings of IEEE International Symposium on Biomedical Imaging (2011)

    Google Scholar 

  25. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. B Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  26. Kather, J.N., Halama, N, Marx, A.: 100,000 histological images of human colorectal cancer and healthy tissue (Version v0.1) [Data set]. Zenodo (2018). https://doi.org/10.5281/zenodo.1214456

  27. Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph CNN for survival analysis on whole slide pathological images. In: Medical Image Computing and Computer Assisted Intervention (2018)

    Google Scholar 

  28. Rong, Y., Huang, W., Xu, T., Huang, J.: DropEdge: towards deep graph convolutional networks on node classification. In: International Conference on Learning Representations (2020)

    Google Scholar 

  29. Kingma, D., Jimmy B.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  31. He, K., Zhang, X., Ren, S., and Sun, J. : Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  32. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Neural Information Processing Systems (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoting Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, K., Liu, Q., Lee, E., Zhou, M., Lu, A., Zhang, S. (2020). Feature-Enhanced Graph Networks for Genetic Mutational Prediction Using Histopathological Images in Colon Cancer. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics