Spatial Distribution of Surface Temperature and Land Cover: A Study Concerning Sardinia, Italy | SpringerLink
Skip to main content

Spatial Distribution of Surface Temperature and Land Cover: A Study Concerning Sardinia, Italy

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Land surface temperature (LST) is a key climate variable that has been studied mainly at the urban scale and in the context of urban heat islands. By analyzing the connection between LST and land cover, this study shows the potential of LST to analyze the relation between urbanization and heating phenomena at the regional level. Land cover data, drawn from Copernicus, and LST, retrieved from Landsat 8 satellite images, are analyzed through a methodology that couples GIS and regression analysis. By looking at the Italian island of Sardinia as a case study, this research shows that urbanization and the spatial dynamics of heating phenomena are closely connected, and that intensively farmed areas behave quite similarly to urban areas, whereas forests are the most effective land covers in mitigating LST, followed by areas covered with Mediterranean shrubs. This leads to key policy recommendations that decision-makers could implement to mitigate LST at the regional scale and that can, in principle, be exported to regions with similar climate and land covers. The significance of this study can be summed up in its novel approach to analyzing the relationship between LST and land covers that uses freely available spatial data and, therefore, can easily be replicated in other regional contexts to derive appropriate policy recommendations.

This article is extracted from: Lai, S., Leone, F, Zoppi, C.: Spatial distribution of surface temperature and land cover: A study concerning Sardinia, Italy. Sustainability 12(8), 3186, 20 pp. (2020). https://doi.org/10.3390/su12083186.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nguyen, T.M., Lin, T.-H., Chan, H.-P.: The environmental effects of urban development in Hanoi, Vietnam from satellite and meteorological observations from 1999–2016. Sustainability 11, 1768 (2019). https://doi.org/10.3390/su11061768

    Article  Google Scholar 

  2. Kim, Y.-H., Baik, J.-J.: Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteorol. 44, 591–605 (2005). https://doi.org/10.1175/JAM2226.1

    Article  Google Scholar 

  3. Munafò, M. (ed.): Consumo di suolo, dinamiche territoriali e servizi ecosistemici. Edizione 2019; Report SNPA 08/19 [Land Take, Territorial Dynamics and Ecosystem Services. 2019 Edition. SNPA Report SNPA 08/19, 2019]. SNPA: Atlanta, GA, USA (2019). ISBN 978–88-448-0964-5

    Google Scholar 

  4. Feizizadeh, B., Blaschke, T., Nazmfar, H., Akbari, E., Kohbanani, H.R.: Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County Iran. J. Environ. Plann. Manage. 56, 1290–1315 (2013). https://doi.org/10.1080/09640568.2012.717888

    Article  Google Scholar 

  5. Fonseka, H.P.U., Zhang, H., Sun, Y., Su, H., Lin, H., Lin, Y.: Urbanization and its impacts on land surface temperature in Colombo metropolitan area, Sri Lanka, from 1988 to 2016. Remote Sens. 11, 957 (2019). https://doi.org/10.3390/rs11080957

    Article  Google Scholar 

  6. Hofierka, J., Gallay, M., Onačillová, K., Hofierka Jr., J.: Physically-based land surface temperature modeling in urban areas using a 3-D city model and multispectral satellite data. Urban Clim. 31, 100566 (2020). https://doi.org/10.1016/j.uclim.2019.100566

    Article  Google Scholar 

  7. Wang, C., Li, Y., Myint, S.W., Zhao, Q., Wentz, E.A.: Impacts of spatial clustering of urban land cover on land surface temperature across Köppen climate zones in the contiguous United States. Landscape Urban Plann. 92, 103668 (2019). https://doi.org/10.1016/j.landurbplan.2019.103668

    Article  Google Scholar 

  8. Alfraihat, R., Mulugeta, G., Gala, T.: Ecological evaluation of urban heat island in Chicago City, USA. J. Atmos. Pollut. 4, 23–29 (2016). https://doi.org/10.12691/jap-4-1-3

    Article  Google Scholar 

  9. Chaudhuri, G., Mishra, N.B.: Spatio-temporal dynamics of land cover and land surface temperature in Ganges-Brahmaputra delta: a comparative analysis between India and Bangladesh. Appl. Geogr. 68, 68–83 (2016). https://doi.org/10.1016/j.apgeog.2016.01.002

    Article  Google Scholar 

  10. Zullo, F., Fazio, G., Romano, B., Marucci, A., Fiorini, L.: Effects of urban growth spatial pattern (UGSP) on the land surface temperature (LST): a study in the Po Valley (Italy). Sci. Total Environ. 650, 1740–1751 (2019). https://doi.org/10.1016/j.scitotenv.2018.09.331

    Article  Google Scholar 

  11. Guha, S., Govil, H., Dey, A., Gill, N.: Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city Italy. Eur. J. Remote Sens. 51, 667–678 (2018). https://doi.org/10.1080/22797254.2018.1474494

    Article  Google Scholar 

  12. Stroppiana, D., Antoninetti, M., Brivio, P.A.: Seasonality of MODIS LST over Southern Italy and correlation with land cover, topography and solar radiation. Eur. J. Remote Sens. 47, 133–152 (2014). https://doi.org/10.5721/EuJRS20144709

    Article  Google Scholar 

  13. Ding, H., Shi, W.: Land-use/land-cover change and its influence on surface temperature: a case study in Beijing City. Int. J. Remote Sens. 34, 5503–5517 (2013). https://doi.org/10.1080/01431161.2013.792966

    Article  Google Scholar 

  14. USGS: Science for a Changing World—EarthExplorer. https://earthexplorer.usgs.gov/. Accessed 11 Apr 2020

  15. Kosztra, B., Büttner, G., Hazeu, G., Arnold, S.: Updated CLC Illustrated Nomenclature Guidelines. Environment Agency Austria, Vienna (2019)

    Google Scholar 

  16. CLC 2018. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018. Accessed 11 Apr 2020

  17. DTM Passo 10 Metri [DTM Sampling Rate 10]. http://webgis2.regione.sardegna.it/catalogodati/card.jsp?uuid=R_SARDEG:JDCBN. Accessed 11 Apr 2020

  18. Ndossi, M.I., Avdan, U.: Application of open source coding technologies in the production of land surface temperature (LST) maps from landsat: a PyQGIS plugin. Remote Sens. 8, 413 (2016). https://doi.org/10.3390/rs8050413

    Article  Google Scholar 

  19. USGS. Using the USGS Landsat Level-1 Data Product. https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product. Accessed 11 Apr 2020

  20. Townshend, J.R.G., Goff, T.E., Tucker, C.J.: Multitemporal dimensionality of images of normalized difference vegetation index at continental scales. IEEE Trans. Geosci. Remote Sens. GE-23, 888–895 (1985). https://doi.org/10.1109/tgrs.1985.289474

  21. Zhang, J., Wang, Y., Li, Y.: A C++ Program for retrieving land surface temperature from the data of Landsat TM/ETM + band6. Comput. Geosci. 32, 1796–1805 (2006). https://doi.org/10.1016/j.cageo.2006.05.001

    Article  Google Scholar 

  22. van de Griend, A.A., Owe, M.: On the relationship between thermal emissivity and the normalized different vegetation index for natural surfaces. Int. J. Remote Sens. 14, 1119–1131 (1993). https://doi.org/10.1080/01431169308904400

    Article  Google Scholar 

  23. Artis, D.A., Carnahan, W.H.: Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 12, 313–329 (1982). https://doi.org/10.1016/0034-4257(82)90043-8

    Article  Google Scholar 

  24. EEA. land accounts for Europe 1990–2000: towards integrated land and ecosystem accounting; European environment agency Report no. 11. Office for Official Publications of the European Communities, Luxembourg (2006). ISBN 92-9167-888-0

    Google Scholar 

  25. ArcGis Help. Resample. https://pro.arcgis.com/en/pro-app/tool-reference/data-management/resample.htm. Accessed 11 Apr 2020

  26. EPSG 32632. https://epsg.io/32632. Accessed 11 Apr 2020

  27. Wolman, A.L., Couper, E.: Potential consequences of linear approximation in economics. Fed. Reserve Bank Richmond Econ. Q. 89, 51–68 (2003)

    Google Scholar 

  28. Oke, T.R.: The urban energy balance. Prog. Phys. Geogr. 12, 471–508 (1988). https://doi.org/10.1177/030913338801200401

    Article  Google Scholar 

  29. Geneletti, D., Cortinovis, C., Zardo, L., Blam Adel, E.: Planning for Ecosystem Services in Cities. Springer, Dordrecht (2019). https://doi.org/10.1007/978-3-030-20024-4

  30. Demuzere, M., et al.: Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manage. 146, 107–115 (2014). https://doi.org/10.1016/j.jenvman.2014.07.025

    Article  Google Scholar 

  31. Fischer, E.M., Schär, C.: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398–403 (2010). https://doi.org/10.1038/ngeo866

    Article  Google Scholar 

  32. Irmak, A. (ed.): Evapotranspiration. Remote Sensing and Modeling. IntechOpen, London, UK (2012). https://doi.org/10.5772/725

  33. Youneszadeh, S., Amiri, N., Pilesjo, P.: The effect of land use change on land surface temperature in the Netherlands. In: Proceedings of the International Conference on Sensors & Models in Remote Sensing & Photogrammetry, Kish Island, Iran, 23–25 November 2015, vol. 41, pp. 745–748 (2015)

    Google Scholar 

  34. Walawender, J.P., Szymanowski, M., Hajto, M.J., Bokwa, A.: Land surface temperature patterns in the urban agglomeration of Krakow (Poland) derived from landsat-7/ETM + data. Pure. appl. Geophys. 171(6), 913–940 (2013). https://doi.org/10.1007/s00024-013-0685-7

    Article  Google Scholar 

  35. Feldhake, C.M., Glenn, D.M., Peterson, D.L.: Pasture soil surface temperature response to drought. Agron. J. 88, 652–656 (1996). https://doi.org/10.2134/agronj1996.00021962008800040025x

    Article  Google Scholar 

  36. Mokhtari, A., Mansor, S.B., Mahmud, A.R., Helmi, Z.M.: Monitoring the impacts of drought on land use/cover: a developed object-based algorithm for NOAA AVHRR time series data. J. Appl. Sci. 11, 3089–3103 (2011). https://doi.org/10.3923/jas.2011.3089.3103

    Article  Google Scholar 

  37. Sruthi, S., Aslam, M.A.M.: Agricultural drought analysis using the NDVI and land surface temperature data: A case study of Raichur District. Aquatic Proc. 4, 1258–1264 (2015). https://doi.org/10.1016/j.aqpro.2015.02.164

    Article  Google Scholar 

  38. Dodo, M.K.: Examining the potential impacts of climate change on international security: EU-Africa partnership on climate change. SpringerPlus 3(1), 1–18 (2014). https://doi.org/10.1186/2193-1801-3-194

    Article  Google Scholar 

  39. Centro Studi di Confagricoltura [Study Center of the Italian Confederation of Agriculture]. L’agricoltura Nelle Regioni d’Italia—2015—Sardegna [The Agriculture in the Italian Regions—2015—Sardinia]. http://www.confagricoltura.it/DownLoadFileUrl.php/url=backend@@comunicazioni@@file_upload@@allegato@@1701171100150_20_sardegna.pdf/nomefile=20_sardegna.pdf. Accessed 11 Apr 2020

  40. Mayor of London: London’s Urban Heat Island: A Summary for Decision Makers. Greater London Authority, City Hall (2006)

    Google Scholar 

  41. Jenning, V., Larson, L., Yun, J.: Advancing sustainability through urban green space: cultural ecosystem services, equity, and social determinants of health. Int. J. Environ. Res. Public Health 13, 196 (2016). https://doi.org/10.3390/ijerph13020196

    Article  Google Scholar 

  42. Webster, C.: The new institutional economics and the evolution of modern urban planning: Insights, issues and lessons. Town Plann. Rev. 76, 455–502 (2005). https://doi.org/10.3828/tpr.76.4.5

    Article  Google Scholar 

  43. Fors, H., Frøik Molin, J., Murphy, M.A., Konijnendijk van den Boschab, C.: User participation in urban green spaces—For the people or the parks? Urban Forest. Urban Greening 14, 722–734 (2015). https://doi.org/10.1016/j.ufug.2015.05.007

  44. Wall, S.: Small-scale forestry and rural development: the intersection of ecosystems, economics and society. In: Proceedings of IUFRO 3.08 Conference Hosted by Galway-Mayo Institute of Technology, Galway, Ireland, 3–6 July 2006. COFORD, Dublin, Irish (2006)

    Google Scholar 

  45. Kumm, K.I., Hessle, A.: Economic comparison between pasture-based beef production and afforestation of abandoned land in Swedish forest districts. Land 9, 42 (2020). https://doi.org/10.3390/land9020042

    Article  Google Scholar 

  46. Hyytiainen, K., Leppanen, J., Pahkasalo, T.: Economic analysis of field afforestation and forest clearance for cultivation in Finland. In: Proceedings of the International Congress of European Association of Agricultural Economists, Ghent, Belgium, 26–29 August 2008

    Google Scholar 

  47. Zavalloni, M., D’Alberto, R., Raggi, M., Viaggi, D.: Farmland abandonment, public goods and the CAP in a marginal area of Italy. Land Use Policy press (2019). https://doi.org/10.1016/j.landusepol.2019.104365

    Article  Google Scholar 

  48. Brouwer, R., Lienhoop, N., Oosterhuis, F.: Incentivizing afforestation agreements: institutional-economic conditions and motivational drivers. J. Forest Econ. 21, 205–222 (2015). https://doi.org/10.1016/j.jfe.2015.09.003

    Article  Google Scholar 

Download references

Acknowledgments

The study was implemented within the Research Program “Paesaggi rurali della Sardegna: pianificazione di infrastrutture verdi e blu e di reti territoriali complesse” [Rural landscapes of Sardinia: Planning policies for green and blue infrastructure and spatial complex networks], funded by the Autonomous Region of Sardinia for the period 2019–2021, under the provisions of the call for the presentation of “Projects related to fundamental or basic research” of the year 2017, implemented at the Department of Civil and Environmental Engineering and Architecture (DICAAR) of the University of Cagliari, Italy.

Sabrina Lai, Federica Leone, and Corrado Zoppi collaboratively designed this study. Individual contributions are as follows: Federica Leone wrote Sections “Introduction” and “Discussion”; Sabrina Lai wrote Sections “Study area”, “Data”, “LST Extraction and Mapping at the Regional Scale”, “Land Covers and Elevation” “Input Table for the Regression” and “LST Spatial Taxonomy Results”; Corrado Zoppi wrote Sections “Land Covers and LST”, “Regression Results”, and “Conclusions”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Leone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, S., Leone, F., Zoppi, C. (2020). Spatial Distribution of Surface Temperature and Land Cover: A Study Concerning Sardinia, Italy. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58814-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58813-7

  • Online ISBN: 978-3-030-58814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics