A Method of Identification of Potential Earthquake Source Zones | SpringerLink
Skip to main content

A Method of Identification of Potential Earthquake Source Zones

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

We propose a machine learning method for mapping potential earthquake source zones (ESZ). We use two hypotheses: (1) the recurrence of strong earthquakes and (2) the dependence of sources of strong earthquakes on the properties of the geological environment. To solve this problem, we know the catalog of earthquakes and a set of spatial fields of geological and geophysical features. We tested the method of identification of the potential ESZ with \(m\ge 6.0\) for the Caucasus region. The map of the potential earthquake source zones and a geological interpretation of the decision rule are presented.

The paper is supported by the Russian Science Foundation, project No20-07-00445.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ananin, I.: European part of the USSR, Ural, West Siberia. In: A New Catalog of Strong Earthquakes in the USSR from Ancient Times to 1975, pp. 465–470 (1975). (in Russian)

    Google Scholar 

  2. Bishop, C.M.: Machine Learning and Pattern Recognition. Information Science and Statistics. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  3. Bune, V., Gorshkov, G.: Seismic zonation of USSR, p. 307. Nauka, Moscow (1980)

    Google Scholar 

  4. Burton, P.W.: Seismic risk in southern Europe through to India examined using Gumbel’s third distribution of extreme values. Geophys. J. Int. 59(2), 249–280 (1979)

    Article  Google Scholar 

  5. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  6. Geisser, S.: Predictive Inference, vol. 55. CRC Press, Boca Raton (1993)

    Book  Google Scholar 

  7. Gelfand, I., et al.: Pattern recognition applied to earthquake epicenters in California. Phys. Earth Planet. Inter. 11(3), 227–283 (1976)

    Article  Google Scholar 

  8. Gitis, V., Ermakov, B.: Fundamentals of spatiotemporal forecasting in geoinformatics, p. 256. FIZMATGIS, Moscow (2004)

    Google Scholar 

  9. Gitis, V.G., Derendyaev, A.B.: Machine learning methods for seismic hazards forecast. Geosciences 9(7), 308 (2019)

    Article  Google Scholar 

  10. Gitis, V., Andrienko, G., Andrienko, N.: Exploration of seismological information in analytical web GIS. Izvestiya. Phys. Solid Earth 40(3), 216–225 (2004)

    Google Scholar 

  11. Gitis, V., Ermakov, B., Ivanovskaya, L., Osher, B., Trofimov, D., Shchukin, Y.K.: The GEO expert system: application for seismic hazard analysis of the caucasus region. In: Cahiers du Centre Europeen de Geodynamique et de Seismologie. Centre européen de géodynamique et de séismologie (1992)

    Google Scholar 

  12. Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification. In: Coyle, L., Freyne, J. (eds.) AICS 2009. LNCS (LNAI), vol. 6206, pp. 188–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17080-5_21

    Chapter  Google Scholar 

  13. Kijko, A.: Estimation of the maximum earthquake magnitude, \(m_{max}\). Pure Appl. Geophys. 161(8), 1655–1681 (2004)

    Article  Google Scholar 

  14. Kondorskaia, N., Shebalin, N.: New Catalog of Strong Earthquakes in the USSR from Ancient Times Through 1977, vol. 31. World Data Center A for Solid Earth Geophysics (1982)

    Google Scholar 

  15. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)

    Google Scholar 

  16. Philip, H., Cisternas, A., Gvishiani, A., Gorshkov, A.: The Caucasus: an actual example of the initial stages of continental collision. Tectonophysics 161(1–2), 1–21 (1989)

    Article  Google Scholar 

  17. Pisarenko, V.: Statistical evaluation of maximum possible earthquakes. Phys. Solid Earth 27(9), 757–763 (1991)

    Google Scholar 

  18. Riznichenko, Y.V.: The source dimensions of the crustal earthquakes and the seismic moment. In: Issledovaniya po fizike zemletryasenii, pp. 9–27 (1976)

    Google Scholar 

  19. Sapozhenko, A., Chukhrov, I.: Boolean function minimization in the class of disjunctive normal forms. J. Sov. Math. 46(4), 2021–2052 (1989)

    Article  Google Scholar 

  20. Sibson, R.H.: Frictional constraints on thrust, wrench and normal faults. Nature 249(5457), 542–544 (1974)

    Article  Google Scholar 

  21. Soloviev, A., Novikova, O., Gorshkov, A., Piotrovskaya, E.: Recognition of potential sources of strong earthquakes in the Caucasus region using GIS technologies. Dokl. Earth Sci. 450(2), 658 (2013). https://doi.org/10.1134/S1028334X13060159

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Derendyaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrov, K.N., Gitis, V.G., Derendyaev, A.B. (2020). A Method of Identification of Potential Earthquake Source Zones. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics