Self-supervised Bayesian Deep Learning for Image Recovery with Applications to Compressive Sensing | SpringerLink
Skip to main content

Self-supervised Bayesian Deep Learning for Image Recovery with Applications to Compressive Sensing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12356))

Included in the following conference series:

  • 5658 Accesses

Abstract

In recent years, deep learning emerges as one promising technique for solving many ill-posed inverse problems in image recovery, and most deep-learning-based solutions are based on supervised learning. Motivated by the practical value of reducing the cost and complexity of constructing labeled training datasets, this paper proposed a self-supervised deep learning approach for image recovery, which is dataset-free. Built upon Bayesian deep network, the proposed method trains a network with random weights that predicts the target image for recovery with uncertainty. Such uncertainty enables the prediction of the target image with small mean squared error by averaging multiple predictions. The proposed method is applied for image reconstruction in compressive sensing (CS), i.e., reconstructing an image from few measurements. The experiments showed that the proposed dataset-free deep learning method not only significantly outperforms traditional non-learning methods, but also is very competitive to the state-of-the-art supervised deep learning methods, especially when the measurements are few and noisy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arce, G., Brady, D., Carin, L., Arguello, H., Kittle, D.: Compressive coded aperture spectral imaging: an introduction. IEEE Signal Process. Mag. 31(1), 105–115 (2013)

    Article  Google Scholar 

  2. Baldi, P., Sadowski, P.J.: Understanding dropout. In: NeurIPS, pp. 2814–2822 (2013)

    Google Scholar 

  3. Barber, D., Bishop, C.M.: Ensemble learning in Bayesian neural networks. Nato ASI Ser. F Comput. Syst. Sci. 168, 215–238 (1998)

    MATH  Google Scholar 

  4. Bernstein, M.A., Fain, S.B., Riederer, S.J.: Effect of windowing and zero-filled reconstruction of MRI data on spatial resolution and acquisition strategy. J. Magn. Reson. Imaging 14(3), 270–280 (2001)

    Article  Google Scholar 

  5. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: ICML, pp. 1613–1622 (2015)

    Google Scholar 

  6. Cai, J., Ji, H., Liu, C., Shen, Z.: Blind motion deblurring from a single image using sparse approximation. In: CVPR, pp. 104–111 (2009)

    Google Scholar 

  7. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theor. 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  8. Chen, G., Tang, J., Leng, S.: Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med. Phys. 35(2), 660–663 (2008)

    Article  Google Scholar 

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  10. Danielyan, A., Katkovnik, V., Egiazarian, K.: Bm3d frames and variational image deblurring. IEEE Trans. Image Process. 21(4), 1715–1728 (2011)

    Article  MathSciNet  Google Scholar 

  11. Ding, Q., Chen, G., Zhang, X., Huang, Q., Ji, H., Gao, H.: Low-dose CT with deep learning regularization via proximal forward backward splitting. Phys. Med. Biol. 65(12), 125009 (2020)

    Article  Google Scholar 

  12. Dong, W., Shi, G., Li, X., Ma, Y., Huang, F.: Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 23(8), 3618–3632 (2014)

    Article  MathSciNet  Google Scholar 

  13. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  14. Duarte, M., et al.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  MathSciNet  Google Scholar 

  15. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In: ICML, pp. 1050–1059 (2016)

    Google Scholar 

  16. Gamper, U., Boesiger, P., Kozerke, S.: Compressed sensing in dynamic MRI. Magn. Reson. Med. 59(2), 365–373 (2008)

    Article  Google Scholar 

  17. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: ICCV, pp. 1026–1034 (2015)

    Google Scholar 

  19. Heckel, R., Hand, P.: Deep decoder: Concise image representations from untrained non-convolutional networks. arXiv preprint arXiv:1810.03982 (2018)

  20. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NeurIPS, pp. 5574–5584 (2017)

    Google Scholar 

  21. Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., Ashok, A.: Reconnet: Non-iterative reconstruction of images from compressively sensed measurements. In: CVPR, pp. 449–458 (2016)

    Google Scholar 

  22. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS, pp. 6402–6413 (2017)

    Google Scholar 

  23. Li, C., Yin, W., Jiang, H., Zhang, Y.: An efficient augmented lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 56(3), 507–530 (2013)

    Article  MathSciNet  Google Scholar 

  24. Li, M., Fan, Z., Ji, H., Shen, Z.: Wavelet frame based algorithm for 3d reconstruction in electron microscopy. SIAM J. Sci. Comput. 36(1), B45–B69 (2014)

    Article  MathSciNet  Google Scholar 

  25. Liu, J., Chen, N., Ji, H.: Learnable Douglas-Rachford iteration and its applications in dot imaging. Inverse Prob. Imaging 14(4), 683 (2020)

    Article  MathSciNet  Google Scholar 

  26. Liu, J., Kuang, T., Zhang, X.: Image reconstruction by splitting deep learning regularization from iterative inversion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 224–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_26

    Chapter  Google Scholar 

  27. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  28. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  29. Meinhardt, T., Moller, M., Hazirbas, C., Cremers, D.: Learning proximal operators: Using denoising networks for regularizing inverse imaging problems. In: ICCV, pp. 1781–1790 (2017)

    Google Scholar 

  30. Metzler, C.A., Maleki, A., Baraniuk, R.: Bm3d-amp: a new image recovery algorithm based on bm3d denoising. In: ICIP, pp. 3116–3120. IEEE (2015)

    Google Scholar 

  31. Metzler, C.A., Maleki, A., Baraniuk, R.: From denoising to compressed sensing. IEEE Trans. Inf. Theory 62(9), 5117–5144 (2016)

    Article  MathSciNet  Google Scholar 

  32. Mousavi, A., Patel, A., Baraniuk, R.: A deep learning approach to structured signal recovery. In: Allerton, pp. 1336–1343. IEEE (2015)

    Google Scholar 

  33. Nan, Y., Quan, Y., Ji, H.: Variational-EM-based deep learning for noise-blind image deblurring. In: CVPR, pp. 3626–3635 (June 2020)

    Google Scholar 

  34. Nan, Y., Ji, H.: Deep learning for handling kernel/model uncertainty in image deconvolution. In: CVPR, pp. 2388–2397 (June 2020)

    Google Scholar 

  35. Quan, Y., Chen, M., Pang, T., Ji, H.: Self2self with dropout: Learning self-supervised denoising from single image. In: CVPR, pp. 1890–1898 (2020)

    Google Scholar 

  36. Quan, Y., Ji, H., Shen, Z.: Data-driven multi-scale non-local wavelet frame construction and image recovery. J. Sci. Comput. 63(2), 307–329 (2015). https://doi.org/10.1007/s10915-014-9893-2

    Article  MathSciNet  MATH  Google Scholar 

  37. Schuler, C., B., C., Harmeling, S., Scholkopf, B.: A machine learning approach for non-blind image deconvolution. In: CVPR, pp. 1067–1074 (2013)

    Google Scholar 

  38. Shi, W., Jiang, F., Liu, S., Zhao, D.: Scalable convolutional neural network for image compressed sensing. In: CVPR, pp. 12290–12299 (2019)

    Google Scholar 

  39. Soltanayev, S., Chun, S.: Training deep learning based denoisers without ground truth data. In: NeurIPS, pp. 3257–3267 (2018)

    Google Scholar 

  40. Tang, J., Nett, B.E., Chen, G.: Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Phys. Med. Biol. 54(19), 5781 (2009)

    Article  Google Scholar 

  41. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR, pp. 9446–9454 (2018)

    Google Scholar 

  42. Xu, K., Zhang, Z., Ren, F.: Lapran: A scalable laplacian pyramid reconstructive adversarial network for flexible compressive sensing reconstruction. In: ECCV, pp. 485–500 (2018)

    Google Scholar 

  43. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. In: NIPS, pp. 1790–1798 (2014)

    Google Scholar 

  44. Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI. In: NeurIPS, pp. 10–18 (2016)

    Google Scholar 

  45. Zhang, J., Ghanem, B.: Ista-net: Interpretable optimization-inspired deep network for image compressive sensing. In: CVPR, pp. 1828–1837 (2018)

    Google Scholar 

  46. Zhang, J., Pan, J., Lai, W.S., Lau, R.W., Yang, M.H.: Learning fully convolutional networks for iterative non-blind deconvolution. In: CVPR, pp. 3817–3825 (2017)

    Google Scholar 

  47. Zhussip, M., Soltanayev, S., Chun, S.: Training deep learning based image denoisers from undersampled measurements without ground truth and without image prior. In: CVPR, pp. 10255–10264 (2019)

    Google Scholar 

Download references

Acknowledgment

Tongyao Pang and Hui Ji would like to acknowledge the support from Singapore MOE Academic Research Fund (AcRF) Tier 2 research project (MOE2017-T2-2-156), and Yuhui Quan would like to acknowledge the support of National Natural Science Foundation of China (61872151, U1611461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ji .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 483 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pang, T., Quan, Y., Ji, H. (2020). Self-supervised Bayesian Deep Learning for Image Recovery with Applications to Compressive Sensing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58621-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58620-1

  • Online ISBN: 978-3-030-58621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics