Adapting Object Detectors with Conditional Domain Normalization | SpringerLink
Skip to main content

Adapting Object Detectors with Conditional Domain Normalization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12356))

Included in the following conference series:

Abstract

Real-world object detectors are often challenged by the domain gaps between different datasets. In this work, we present the Conditional Domain Normalization (CDN) to bridge the domain distribution gap. CDN is designed to encode different domain inputs into a shared latent space, where the features from different domains carry the same domain attribute. To achieve this, we first disentangle the domain-specific attribute out of the semantic features from source domain via a domain embedding module, which learns a domain-vector to characterize the domain attribute information. Then this domain-vector is used to encode the features from target domain through a conditional normalization, resulting in different domains’ features carrying the same domain attribute. We incorporate CDN into various convolution stages of an object detector to adaptively address the domain shifts of different level’s representation. In contrast to existing adaptation works that conduct domain confusion learning on semantic features to remove domain-specific factors, CDN aligns different domain distributions by modulating the semantic features of target domains conditioned on the learned domain-vector of the source domain. Extensive experiments show that CDN outperforms existing methods remarkably on both real-to-real and synthetic-to-real adaptation benchmarks, including 2D image detection and 3D point cloud detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010). https://doi.org/10.1007/s10994-009-5152-4

    Article  MathSciNet  Google Scholar 

  2. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR (2017)

    Google Scholar 

  3. Chen, X., et al.: 3D object proposals for accurate object class detection. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  4. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: CVPR (2018)

    Google Scholar 

  5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  6. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. arXiv preprint arXiv:1610.07629 (2016)

  7. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: CVPR (2016)

    Google Scholar 

  8. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)

    Google Scholar 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  10. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  15. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)

  16. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  17. Hurl, B., Czarnecki, K., Waslander, S.: Precise synthetic image and LiDAR (PreSIL) dataset for autonomous vehicle perception. In: 2019 IEEE Intelligent Vehicles Symposium (IV) (2019)

    Google Scholar 

  18. Inoue, N., Furuta, R., Yamasaki, T., Aizawa, K.: Cross-domain weakly-supervised object detection through progressive domain adaptation. In: CVPR (2018)

    Google Scholar 

  19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  20. James, S., et al.: Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-to-canonical adaptation networks. In: CVPR (2019)

    Google Scholar 

  21. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? arXiv preprint arXiv:1610.01983 (2016)

  22. Kim, T., Jeong, M., Kim, S., Choi, S., Kim, C.: Diversify and match: a domain adaptive representation learning paradigm for object detection. In: CVPR (2019)

    Google Scholar 

  23. Liu, Z., et al.: Open compound domain adaptation. In: CVPR (2020)

    Google Scholar 

  24. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  25. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. arXiv preprint arXiv:1903.07291 (2019)

  26. Peng, C., et al.: MegDet: a large mini-batch object detector. In: CVPR (2018)

    Google Scholar 

  27. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: ICCV (2019)

    Google Scholar 

  28. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of robotic control with dynamics randomization. In: ICRA. IEEE (2018)

    Google Scholar 

  29. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  30. Qin, C., You, H., Wang, L., Kuo, C.C.J., Fu, Y.: PointDAN: a multi-scale 3D domain adaption network for point cloud representation. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  31. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. The MIT Press, Cambridge (2009)

    Google Scholar 

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  33. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: CVPR (2019)

    Google Scholar 

  34. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 126, 973–992 (2018). https://doi.org/10.1007/s11263-018-1072-8

    Article  Google Scholar 

  35. Saleh, K., et al.: Domain adaptation for vehicle detection from bird’s eye view lidar point cloud data. In: ICCV Workshops (2019)

    Google Scholar 

  36. Sankaranarayanan, S., Balaji, Y., Jain, A., Nam Lim, S., Chellappa, R.: Learning from synthetic data: addressing domain shift for semantic segmentation. In: CVPR (2018)

    Google Scholar 

  37. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR (2019)

    Google Scholar 

  38. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: IROS. IEEE (2017)

    Google Scholar 

  39. Tsai, Y.H., Sohn, K., Schulter, S., Chandraker, M.: Domain adaptation for structured output via discriminative representations. arXiv preprint arXiv:1901.05427 (2019)

  40. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  41. Wang, X., Yu, K., Dong, C., Change Loy, C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: CVPR (2018)

    Google Scholar 

  42. Wrenninge, M., Unger, J.: Synscapes: a photorealistic synthetic dataset for street scene parsing. arXiv preprint arXiv:1810.08705 (2018)

  43. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579 (2015)

  44. Yu, F., et al.: BDD100K: a diverse driving video database with scalable annotation tooling. arXiv preprint arXiv:1805.04687 (2018)

  45. Yue, X., Wu, B., Seshia, S.A., Keutzer, K., Sangiovanni-Vincentelli, A.L.: A LiDAR point cloud generator: from a virtual world to autonomous driving. In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval (2018)

    Google Scholar 

  46. Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective cross-domain alignment. In: CVPR (2019)

    Google Scholar 

  47. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Su .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 67648 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, P. et al. (2020). Adapting Object Detectors with Conditional Domain Normalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58621-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58620-1

  • Online ISBN: 978-3-030-58621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics