Abstract
Automatic discovery of category-specific 3D keypoints from a collection of objects of a category is a challenging problem. The difficulty is added when objects are represented by 3D point clouds, with variations in shape and semantic parts and unknown coordinate frames. We define keypoints to be category-specific, if they meaningfully represent objects’ shape and their correspondences can be simply established order-wise across all objects. This paper aims at learning such 3D keypoints, in an unsupervised manner, using a collection of misaligned 3D point clouds of objects from an unknown category. In order to do so, we model shapes defined by the keypoints, within a category, using the symmetric linear basis shapes without assuming the plane of symmetry to be known. The usage of symmetry prior leads us to learn stable keypoints suitable for higher misalignments. To the best of our knowledge, this is the first work on learning such keypoints directly from 3D point clouds for a general category. Using objects from four benchmark datasets, we demonstrate the quality of our learned keypoints by quantitative and qualitative evaluations. Our experiments also show that the keypoints discovered by our method are geometrically and semantically consistent.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2009)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Novotny, D., Ravi, N., Graham, B., Neverova, N., Vedaldi, A.: C3DPO: canonical 3D pose networks for non-rigid structure from motion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7688–7697 (2019)
Dai, Y., Li, H., He, M.: A simple prior-free method for non-rigid structure-from-motion factorization. In: CVPR (2012)
Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vision 80(2), 189–210 (2007)
Yew, Z.J., Lee, G.H.: 3DFeat-Net: weakly supervised local 3D features for point cloud registration. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 630–646. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_37
Kneip, L., Li, H., Seo, Y.: UPnP: an optimal O(n) solution to the absolute pose problem with universal applicability. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 127–142. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_9
Luong, Q.T., Faugeras, O.: The fundamental matrix: theory, algorithms, and stability analysis. Int. J. Comput. Vision 17, 43–75 (1995)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 34(6), 248:1–248:16 (2015)
Shotton, J., et al.: Real-time human pose recognition in parts from single depth images. In: CVPR 2011, pp. 1297–1304. IEEE (2011)
Moreno-Noguer, F.: 3D human pose estimation from a single image via distance matrix regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2823–2832 (2017)
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)
Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2D-to-3D matching. In: 2011 International Conference on Computer Vision, pp. 667–674. IEEE (2011)
Tang, H., Xu, D., Liu, G., Wang, W., Sebe, N., Yan, Y.: Cycle in cycle generative adversarial networks for keypoint-guided image generation. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2052–2060 (2019)
Zafeiriou, S., Chrysos, G.G., Roussos, A., Ververas, E., Deng, J., Trigeorgis, G.: The 3D menpo facial landmark tracking challenge. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2503–2511 (2017)
Huang, S., Gong, M., Tao, D.: A coarse-fine network for keypoint localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3028–3037 (2017)
Pavlakos, G., Zhou, X., Chan, A., Derpanis, K.G., Daniilidis, K.: 6-DoF object pose from semantic keypoints. In: ICRA (2017)
Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_7
Dong, X., Yan, Y., Ouyang, W., Yang, Y.: Style aggregated network for facial landmark detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 379–388 (2018)
Yu, X., Zhou, F., Chandraker, M.: Deep deformation network for object landmark localization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 52–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_4
Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517. IEEE (2012)
Li, Y.: A novel fast retina keypoint extraction algorithm for multispectral images using geometric algebra. IEEE Access 7, 167895–167903 (2019)
Li, J., Lee, G.H.: USIP: unsupervised stable interest point detection from 3D point clouds. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 361–370 (2019)
Suwajanakorn, S., Snavely, N., Tompson, J.J., Norouzi, M.: Discovery of latent 3D keypoints via end-to-end geometric reasoning. In: Advances in Neural Information Processing Systems, pp. 2059–2070 (2018)
Wu, J., et al.: Single image 3D interpreter network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 365–382. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_22
Yang, H., Carlone, L.: In perfect shape: certifiably optimal 3D shape reconstruction from 2D landmarks. arXiv preprint arXiv:1911.11924 (2019)
Hejrati, M., Ramanan, D.: Analyzing 3D objects in cluttered images. In: Advances in Neural Information Processing Systems, pp. 593–601 (2012)
Wang, C., Wang, Y., Lin, Z., Yuille, A.L., Gao, W.: Robust estimation of 3D human poses from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2361–2368 (2014)
Persad, R.A., Armenakis, C.: Automatic 3D surface co-registration using keypoint matching. Photogram. Eng. Remote Sens. 83(2), 137–151 (2017)
Mitra, N.J., Wand, M., Zhang, H., Cohen-Or, D., Kim, V., Huang, Q.X.: Structure-aware shape processing. In: ACM SIGGRAPH 2014 Courses, pp. 1–21 (2014)
Reed, M.P.: Modeling body shape from surface landmark configurations. In: Duffy, V.G. (ed.) DHM 2013. LNCS, vol. 8026, pp. 376–383. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39182-8_44
Creusot, C., Pears, N., Austin, J.: 3D landmark model discovery from a registered set of organic shapes. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 57–64. IEEE (2012)
Sridhar, S., Rempe, D., Valentin, J., Sofien, B., Guibas, L.J.: Multiview aggregation for learning category-specific shape reconstruction. In: Advances in Neural Information Processing Systems, pp. 2348–2359 (2019)
Gao, Y., Yuille, A.L.: Symmetric non-rigid structure from motion for category-specific object structure estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 408–424. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_26
Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: CVPR (2000)
Torresani, L., Hertzmann, A., Bregler, C.: Nonrigid structure-from-motion: estimating shape and motion with hierarchical priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 878–892 (2008)
Akhter, I., Sheikh, Y., Khan, S., Kanade, T.: Nonrigid structure from motion in trajectory space. In: NIPS (2008)
Taylor, J., Jepson, A.D., Kutulakos, K.N.: Non-rigid structure from locally-rigid motion. In: CVPR (2010)
Parashar, S., Pizarro, D., Bartoli, A.: Isometric non-rigid shape-from-motion in linear time. In: CVPR (2016)
Kong, C., Lucey, S.: Deep non-rigid structure from motion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1558–1567 (2019)
Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2642–2651 (2019)
Wu, S., Rupprecht, C., Vedaldi, A.: Unsupervised learning of probably symmetric deformable 3D objects from images in the wild. In: CVPR (2020)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems (2017)
Verma, N., Boyer, E., Verbeek, J.: FeastNet: feature-steered graph convolutions for 3D shape analysis. In: CVPR (2018)
Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: Advances in Neural Information Processing Systems, pp. 737–744 (1994)
Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vision 9(2), 137–154 (1992)
Yi, L., et al.: A scalable active framework for region annotation in 3D shape collections. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)
Li, J., Chen, B.M., Hee Lee, G.: SO-Net: self-organizing network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9397–9406 (2018)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)
Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)
Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: CVPR, pp. 6233–6242 (2017)
Gerig, T., et al.: Morphable face models-an open framework. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 75–82. IEEE (2018)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NIPS (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Acknowledgements
This research was funded by the EU Horizon 2020 research and innovation program under grant agreement No. 820434. This work was also supported by Project RTI2018-096903-B-I00 (AEI/FEDER, UE) and Regional Council of Bourgogne Franche-Comté (2017-9201AAO048S01342).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Fernandez-Labrador, C., Chhatkuli, A., Paudel, D.P., Guerrero, J.J., Demonceaux, C., Gool, L.V. (2020). Unsupervised Learning of Category-Specific Symmetric 3D Keypoints from Point Sets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12370. Springer, Cham. https://doi.org/10.1007/978-3-030-58595-2_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-58595-2_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58594-5
Online ISBN: 978-3-030-58595-2
eBook Packages: Computer ScienceComputer Science (R0)