Identity-Guided Human Semantic Parsing for Person Re-identification | SpringerLink
Skip to main content

Identity-Guided Human Semantic Parsing for Person Re-identification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12348))

Included in the following conference series:

  • 5383 Accesses

Abstract

Existing alignment-based methods have to employ the pre-trained human parsing models to achieve the pixel-level alignment, and cannot identify the personal belongings (e.g., backpacks and reticule) which are crucial to person re-ID. In this paper, we propose the identity-guided human semantic parsing approach (ISP) to locate both the human body parts and personal belongings at pixel-level for aligned person re-ID only with person identity labels. We design the cascaded clustering on feature maps to generate the pseudo-labels of human parts. Specifically, for the pixels of all images of a person, we first group them to foreground or background and then group the foreground pixels to human parts. The cluster assignments are subsequently used as pseudo-labels of human parts to supervise the part estimation and ISP iteratively learns the feature maps and groups them. Finally, local features of both human body parts and personal belongings are obtained according to the self-learned part estimation, and only features of visible parts are utilized for the retrieval. Extensive experiments on three widely used datasets validate the superiority of ISP over lots of state-of-the-art methods. Our code is available at https://github.com/CASIA-IVA-Lab/ISP-reID.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The parts of hat, hair, sunglass, face in LIP is aggregated as the “ground-truth” for Head; the parts of left-leg, right-leg, socks, pants are aggregated as Legs; the parts of left-shoe and right-shoe are aggregated as Shoes.

References

  1. Alp Güler, R., Neverova, N., Kokkinos, I.: DensePose: dense human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7297–7306 (2018)

    Google Scholar 

  2. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  3. Chen, B., Deng, W., Hu, J.: Mixed high-order attention network for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  4. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  5. Ge, Y., Li, Z., Zhao, H., Yin, G., Yi, S., Wang, X., et al.: FD-GAN: pose-guided feature distilling GAN for robust person re-identification. In: Advances in Neural Information Processing Systems, pp. 1222–1233 (2018)

    Google Scholar 

  6. Guo, J., Yuan, Y., Huang, L., Zhang, C., Yao, J.G., Han, K.: Beyond human parts: dual part-aligned representations for person re-identification. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. He, L., Liang, J., Li, H., Sun, Z.: Deep spatial feature reconstruction for partial person re-identification: alignment-free approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7073–7082 (2018)

    Google Scholar 

  9. He, L., Sun, Z., Zhu, Y., Wang, Y.: Recognizing partial biometric patterns. arXiv preprint arXiv:1810.07399 (2018)

  10. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  11. Hong, S., Noh, H., Han, B.: Decoupled deep neural network for semi-supervised semantic segmentation. In: Advances in Neural Information Processing Systems, pp. 1495–1503 (2015)

    Google Scholar 

  12. Hong, S., Yeo, D., Kwak, S., Lee, H., Han, B.: Weakly supervised semantic segmentation using web-crawled videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7322–7330 (2017)

    Google Scholar 

  13. Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., Chen, X.: Interaction-and-aggregation network for person re-identification. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  14. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  15. Huang, H., Li, D., Zhang, Z., Chen, X., Huang, K.: Adversarially occluded samples for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5098–5107 (2018)

    Google Scholar 

  16. Huang, Z., Wang, X., Wang, J., Liu, W., Wang, J.: Weakly-supervised semantic segmentation network with deep seeded region growing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7014–7023 (2018)

    Google Scholar 

  17. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  18. Kalayeh, M.M., Basaran, E., Gökmen, M., Kamasak, M.E., Shah, M.: Human semantic parsing for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1062–1071 (2018)

    Google Scholar 

  19. Lee, J., Kim, E., Lee, S., Lee, J., Yoon, S.: FickleNet: weakly and semi-supervised semantic image segmentation using stochastic inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5267–5276 (2019)

    Google Scholar 

  20. Li, D., Chen, X., Zhang, Z., Huang, K.: Learning deep context-aware features over body and latent parts for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 384–393 (2017)

    Google Scholar 

  21. Li, P., Xu, Y., Wei, Y., Yang, Y.: Self-correction for human parsing. arXiv preprint arXiv:1910.09777 (2019)

  22. Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReId: deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 152–159 (2014)

    Google Scholar 

  23. Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2018)

    Google Scholar 

  24. Liang, X., Gong, K., Shen, X., Lin, L.: Look into person: joint body parsing & pose estimation network and a new benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 871–885 (2018)

    Article  Google Scholar 

  25. Lin, Y., Dong, X., Zheng, L., Yan, Y., Yang, Y.: A bottom-up clustering approach to unsupervised person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8738–8745 (2019)

    Google Scholar 

  26. Liu, J., Ni, B., Yan, Y., Zhou, P., Cheng, S., Hu, J.: Pose transferrable person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4099–4108 (2018)

    Google Scholar 

  27. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  28. Miao, J., Wu, Y., Liu, P., Ding, Y., Yang, Y.: Pose-guided feature alignment for occluded person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 542–551 (2019)

    Google Scholar 

  29. Saquib Sarfraz, M., Schumann, A., Eberle, A., Stiefelhagen, R.: A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 420–429 (2018)

    Google Scholar 

  30. Si, J., Zhang, H., Li, C.G., Kuen, J., Kong, X., Kot, A.C., Wang, G.: Dual attention matching network for context-aware feature sequence based person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5363–5372 (2018)

    Google Scholar 

  31. Song, C., Huang, Y., Ouyang, W., Wang, L.: Mask-guided contrastive attention model for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1179–1188 (2018)

    Google Scholar 

  32. Souly, N., Spampinato, C., Shah, M.: Semi and weakly supervised semantic segmentation using generative adversarial network. arXiv preprint arXiv:1703.09695 (2017)

  33. Su, C., Li, J., Zhang, S., Xing, J., Gao, W., Tian, Q.: Pose-driven deep convolutional model for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3960–3969 (2017)

    Google Scholar 

  34. Suh, Y., Wang, J., Tang, S., Mei, T., Lee, K.M.: Part-aligned bilinear representations for person re-identification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 418–437. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_25

    Chapter  Google Scholar 

  35. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  36. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 501–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_30

    Chapter  Google Scholar 

  37. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  38. Tay, C.P., Roy, S., Yap, K.H.: AANet: attribute attention network for person re-identifications. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  39. Wang, C., Zhang, Q., Huang, C., Liu, W., Wang, X.: Mancs: a multi-task attentional network with curriculum sampling for person re-identification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 384–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_23

    Chapter  Google Scholar 

  40. Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  41. Wang, G., Yuan, Y., Chen, X., Li, J., Zhou, X.: Learning discriminative features with multiple granularities for person re-identification. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 274–282. ACM (2018)

    Google Scholar 

  42. Wang, X., You, S., Li, X., Ma, H.: Weakly-supervised semantic segmentation by iteratively mining common object features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1354–1362 (2018)

    Google Scholar 

  43. Wang, Y., et al.: Resource aware person re-identification across multiple resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8042–8051 (2018)

    Google Scholar 

  44. Wei, L., Zhang, S., Yao, H., Gao, W., Tian, Q.: GLAD: global-local-alignment descriptor for pedestrian retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 420–428. ACM (2017)

    Google Scholar 

  45. Wei, Y., Feng, J., Liang, X., Cheng, M.M., Zhao, Y., Yan, S.: Object region mining with adversarial erasing: a simple classification to semantic segmentation approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1568–1576 (2017)

    Google Scholar 

  46. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  47. Xu, J., Zhao, R., Zhu, F., Wang, H., Ouyang, W.: Attention-aware compositional network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2119–2128 (2018)

    Google Scholar 

  48. Yang, W., Huang, H., Zhang, Z., Chen, X., Huang, K., Zhang, S.: Towards rich feature discovery with class activation maps augmentation for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1389–1398 (2019)

    Google Scholar 

  49. Yao, H., Zhang, S., Hong, R., Zhang, Y., Xu, C., Tian, Q.: Deep representation learning with part loss for person re-identification. IEEE Trans. Image Process. 28(6), 2860–2871 (2019)

    Article  MathSciNet  Google Scholar 

  50. Zhang, X., et al.: AlignedReID: surpassing human-level performance in person re-identification. arXiv preprint arXiv:1711.08184v2 (2018)

  51. Zhang, Z., Lan, C., Zeng, W., Chen, Z.: Densely semantically aligned person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 667–676 (2019)

    Google Scholar 

  52. Zhao, L., Li, X., Zhuang, Y., Wang, J.: Deeply-learned part-aligned representations for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3219–3228 (2017)

    Google Scholar 

  53. Zheng, F., et al.: Pyramidal person re-identification via multi-loss dynamic training. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  54. Zheng, L., Huang, Y., Lu, H., Yang, Y.: Pose invariant embedding for deep person re-identification. IEEE Trans. Image Process. (2019)

    Google Scholar 

  55. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Computer Vision, IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)

    Google Scholar 

  56. Zheng, M., Karanam, S., Wu, Z., Radke, R.J.: Re-identification with consistent attentive siamese networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5735–5744 (2019)

    Google Scholar 

  57. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3754–3762 (2017)

    Google Scholar 

  58. Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1318–1327 (2017)

    Google Scholar 

  59. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv preprint arXiv:1708.04896 (2017)

  60. Zhou, Y., Zhu, Y., Ye, Q., Qiu, Q., Jiao, J.: Weakly supervised instance segmentation using class peak response. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3791–3800 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Key-Area Research and Development Program of Guangdong Province (No. 2020B010165001), National Natural Science Foundation of China (No. 61772527, 61976210, 61702510), China Postdoctoral Science Foundation No. 2019M660859, Open Project of Key Laboratory of Ministry of Public Security for Road Traffic Safety (No. 2020ZDSYSKFKT04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, K., Guo, H., Liu, Z., Tang, M., Wang, J. (2020). Identity-Guided Human Semantic Parsing for Person Re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58580-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58579-2

  • Online ISBN: 978-3-030-58580-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics