Temporal Distinct Representation Learning for Action Recognition | SpringerLink
Skip to main content

Temporal Distinct Representation Learning for Action Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

  • 4221 Accesses

Abstract

Motivated by the previous success of Two-Dimensional Convolutional Neural Network (2D CNN) on image recognition, researchers endeavor to leverage it to characterize videos. However, one limitation of applying 2D CNN to analyze videos is that different frames of a video share the same 2D CNN kernels, which may result in repeated and redundant information utilization, especially in the spatial semantics extraction process, hence neglecting the critical variations among frames. In this paper, we attempt to tackle this issue through two ways. 1) Design a sequential channel filtering mechanism, i.e., Progressive Enhancement Module (PEM), to excite the discriminative channels of features from different frames step by step, and thus avoid repeated information extraction. 2) Create a Temporal Diversity Loss (TD Loss) to force the kernels to concentrate on and capture the variations among frames rather than the image regions with similar appearance. Our method is evaluated on benchmark temporal reasoning datasets Something-Something V1 and V2, and it achieves visible improvements over the best competitor by \(2.4\%\) and \(1.3\%\), respectively. Besides, performance improvements over the 2D-CNN-based state-of-the-arts on the large-scale dataset Kinetics are also witnessed.

J. Weng and D. Luo—Equal contribution. This work is done when Junwu Weng is an intern at Youtu Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  2. Choi, J., Gao, C., Messou, J.C., Huang, J.B.: Why can’t i dance in the mall, learning to mitigate scene bias in action recognition. In: NeurIPS, pp. 853–865 (2019)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)

    Google Scholar 

  4. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV, pp. 6202–6211 (2019)

    Google Scholar 

  5. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: ICCV, vol. 1, p. 5 (2017)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  8. Jiang, Y.-G., Dai, Q., Xue, X., Liu, W., Ngo, C.-W.: Trajectory-based modeling of human actions with motion reference points. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 425–438. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_31

    Chapter  Google Scholar 

  9. Li, Y., Song, S., Li, Y., Liu, J.: Temporal bilinear networks for video action recognition. In: AAAI, vol. 33, pp. 8674–8681 (2019)

    Google Scholar 

  10. Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module for efficient video understanding. In: ICCV, pp. 7083–7093 (2019)

    Google Scholar 

  11. Liu, Z., et al.: Teinet: towards an efficient architecture for video recognition. In: AAAI, vol. 2, p. 8 (2020)

    Google Scholar 

  12. Lu, X., Ma, C., Ni, B., Yang, X., Reid, I., Yang, M.-H.: Deep regression tracking with shrinkage loss. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 369–386. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_22

    Chapter  Google Scholar 

  13. Lu, X., Wang, W., Ma, C., Shen, J., Shao, L., Porikli, F.: See more, know more: Unsupervised video object segmentation with co-attention siamese networks. In: CVPR, pp. 3623–3632 (2019)

    Google Scholar 

  14. Lu, X., Wang, W., Shen, J., Tai, Y.W., Crandall, D.J., Hoi, S.C.: Learning video object segmentation from unlabeled videos. In: CVPR, pp. 8960–8970 (2020)

    Google Scholar 

  15. Luo, C., Yuille, A.L.: Grouped spatial-temporal aggregation for efficient action recognition. In: ICCV, pp. 5512–5521 (2019)

    Google Scholar 

  16. Mahdisoltani, F., Berger, G., Gharbieh, W., Fleet, D., Memisevic, R.: On the effectiveness of task granularity for transfer learning. arXiv:1804.09235 (2018)

  17. Qiu, Z., Yao, T., Ngo, C.W., Tian, X., Mei, T.: Learning spatio-temporal representation with local and global diffusion. In: CVPR, pp. 12056–12065 (2019)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2014)

    Google Scholar 

  19. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  20. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489–4497 (2015)

    Google Scholar 

  21. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR, pp. 6450–6459 (2018)

    Google Scholar 

  22. Wang, L., Li, W., Li, W., Van Gool, L.: Appearance-and-relation networks for video classification. In: CVPR, pp. 1430–1439 (2018)

    Google Scholar 

  23. Wang, L., Xiong, Y., Wang, Z., Qiao, Yu., Lin, D., Tang, X., Van Gool, L.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  24. Wang, X., Farhadi, A., Gupta, A.: Actions transformations. In: CVPR, pp. 2658–2667 (2016)

    Google Scholar 

  25. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  26. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 413–431. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_25

    Chapter  Google Scholar 

  27. Wang, Y., Hoai, M.: Pulling actions out of context, explicit separation for effective combination. In: CVPR, pp. 7044–7053 (2018)

    Google Scholar 

  28. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  29. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NeurIPS, pp. 802–810 (2015)

    Google Scholar 

  30. Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., Zheng, N.: View adaptive recurrent neural networks for high performance human action recognition from skeleton data. In: ICCV, pp. 2117–2126 (2017)

    Google Scholar 

  31. Zhao, B., Wu, X., Feng, J., Peng, Q., Yan, S.: Diversified visual attention networks for fine-grained object classification. T-MM 19(6), 1245–1256 (2017)

    Google Scholar 

  32. Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: CVPR, pp. 5209–5217 (2017)

    Google Scholar 

  33. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 831–846. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_49

    Chapter  Google Scholar 

  34. Zhu, X., Xu, C., Hui, L., Lu, C., Tao, D.: Approximated bilinear modules for temporal modeling. In: ICCV, pp. 3494–3503 (2019)

    Google Scholar 

Download references

Acknowledgement

We thank Dr. Wei Liu from Tencent AI Lab for his valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghao Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weng, J. et al. (2020). Temporal Distinct Representation Learning for Action Recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics