Face Super-Resolution Guided by 3D Facial Priors | SpringerLink
Skip to main content

Face Super-Resolution Guided by 3D Facial Priors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12349))

Included in the following conference series:

Abstract

State-of-the-art face super-resolution methods employ deep convolutional neural networks to learn a mapping between low- and high-resolution facial patterns by exploring local appearance knowledge. However, most of these methods do not well exploit facial structures and identity information, and struggle to deal with facial images that exhibit large pose variations. In this paper, we propose a novel face super-resolution method that explicitly incorporates 3D facial priors which grasp the sharp facial structures. Our work is the first to explore 3D morphable knowledge based on the fusion of parametric descriptions of face attributes (e.g., identity, facial expression, texture, illumination, and face pose). Furthermore, the priors can easily be incorporated into any network and are extremely efficient in improving the performance and accelerating the convergence speed. Firstly, a 3D face rendering branch is set up to obtain 3D priors of salient facial structures and identity knowledge. Secondly, the Spatial Attention Module is used to better exploit this hierarchical information (i.e., intensity similarity, 3D facial structure, and identity content) for the super-resolution problem. Extensive experiments demonstrate that the proposed 3D priors achieve superior face super-resolution results over the state-of-the-arts.

B. Menze, W. Liu—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In ACM SIGGRAPH (1999)

    Google Scholar 

  2. Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., Dunaway, D.: A 3D morphable model learnt from 10,000 faces. In: CVPR (2016)

    Google Scholar 

  3. Cao, Q., Lin, L., Shi, Y., Liang, X., Li, G.: Attention-aware face hallucination via deep reinforcement learning. In: CVPR (2017)

    Google Scholar 

  4. Chen, Y., Tai, Y., Liu, X., Shen, C., Yang, J.: FSRNet: end-to-end learning face super-resolution with facial priors. In: CVPR (2018)

    Google Scholar 

  5. Dahl, R., Norouzi, M., Shlens, J.: Pixel recursive super resolution. In: ICCV (2017)

    Google Scholar 

  6. Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set. In: CVPRW (2019)

    Google Scholar 

  7. Dong, C., Loy, C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. TPAMI 38(2), 295–307 (2016)

    Article  Google Scholar 

  8. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  9. Fritsche, M., Gu, S., Timofte, R.: Frequency separation for real-world super-resolution. In: CVPRW (2019)

    Google Scholar 

  10. Grm, K., Scheirer, W., Štruc, V.: Face hallucination using cascaded super-resolution and identity priors. TIP 29, 2150–2165 (2019)

    Google Scholar 

  11. Han, C., Shan, S., Kan, M., Wu, S., Chen, X.: Face recognition with contrastive convolution. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 120–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_8

    Chapter  Google Scholar 

  12. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back projection networks for super-resolution. In: CVPR (2018)

    Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  14. Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-SRNet: a wavelet-based CNN for multi-scale face super resolution. In: ICCV (2017)

    Google Scholar 

  15. Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. In: NIPS (2015)

    Google Scholar 

  16. Kim, D., Kim, M., Kwon, G., Kim, D.: Progressive face super-resolution via attention to facial landmark. In: BMVC (2019)

    Google Scholar 

  17. Kim, J., Lee, J., Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  18. Kim, J., Lee, J., Lee, K.: Deeply recursive convolutional network for image super-resolution. In: CVPR (2016)

    Google Scholar 

  19. Lai, W., Huang, J., Ahuja, N., Yang, M.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: CVPR (2017)

    Google Scholar 

  20. Li, Z., Tang, J., Zhang, L., Yang, J.: Weakly-supervised semantic guided hashing for social image retrieval. Int. J. Comput. Vision 128(8), 2265–2278 (2020). https://doi.org/10.1007/s11263-020-01331-0

    Article  MathSciNet  Google Scholar 

  21. Lian, S., Zhou, H., Sun, Y.: A feature-guided super-resolution generative adversarial network for unpaired image super-resolution. In: NIPS (2019)

    Google Scholar 

  22. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPRW, pp. 1646–1654 (2017)

    Google Scholar 

  23. Liu, C., Shum, H., Freeman, W.: Face hallucination: theory and practice. Int. J. Comput. Vision 75(1), 115–134 (2007). https://doi.org/10.1007/s11263-006-0029-5

    Article  Google Scholar 

  24. Liu, W., Lin, D., Tang, X.: Hallucinating faces: TensorPatch super-resolution and coupled residue compensation. In: CVPR (2005)

    Google Scholar 

  25. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  26. Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: ICML (2016)

    Google Scholar 

  27. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: SIGGRAPH Annual Conference on Computer Graphics and Interactive Techniques, pp. 497–500 (2001)

    Google Scholar 

  28. Ren, W., Yang, J., Deng, S., Wipf, D., Cao, X., Tong, X.: Face video deblurring via 3D facial priors. In: ICCV (2019)

    Google Scholar 

  29. Shen, Z., Lai, W., Xu, T., Kautz, J., Yang, M.: Deep semantic face deblurring. In: CVPR (2018)

    Google Scholar 

  30. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)

    Google Scholar 

  31. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR (2017)

    Google Scholar 

  32. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: CVPR (2016)

    Google Scholar 

  33. Wang, X., Tang, X.: Hallucinating face by eigen transformation. Trans. Syst. Man Cybern. C 35(3), 425–434 (2005)

    Article  Google Scholar 

  34. Wang, X., Yu, K., Dong, C., Loy, C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: CVPR (2018)

    Google Scholar 

  35. Yu, X., Fernando, B., Ghanem, B., Porikli, F., Hartley, R.: Face super-resolution guided by facial component heatmaps. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 219–235. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_14

    Chapter  Google Scholar 

  36. Yu, X., Fernando, B., Hartley, R., Porikli, F.: Super-resolving very low-resolution face images with supplementary attributes. In: CVPR (2018)

    Google Scholar 

  37. Yu, X., Porikli, F.: Ultra-resolving face images by discriminative generative networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 318–333. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_20

    Chapter  Google Scholar 

  38. Yu, X., Porikli, F.: Hallucinating very low-resolution unaligned and noisy face images by transformative discriminative autoencoders. In: CVPR (2017)

    Google Scholar 

  39. Yu, X., Porikli, F.: Imagining the unimaginable faces by deconvolutional networks. TIP 27(6), 2747–2761 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Zafeiriou, S., Trigeorgis, G., Chrysos, G., Deng, J., Shen, J.: The menpo facial landmark localisation challenge: a step towards the solution. In: CVPRW (2017)

    Google Scholar 

  41. Zhang, K., et al.: Super-identity convolutional neural network for face hallucination. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 196–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_12

    Chapter  Google Scholar 

  42. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  43. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR (2018)

    Google Scholar 

  44. Zhao, J., Xiong, L., Li, J., Xing, J., Yan, S., Feng, J.: 3D-aided dual-agent GANs for unconstrained face recognition. TPAMI 41, 2380–2394 (2019)

    Article  Google Scholar 

  45. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. (CSUR) 35(4), 399–458 (2003)

    Article  Google Scholar 

  46. Zhou, E., Fan, H.: Learning face hallucination in the wild. In: AAAI (2015)

    Google Scholar 

  47. Zhu, S., Liu, S., Loy, C.C., Tang, X.: Deep cascaded bi-network for face hallucination. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 614–630. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_37

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key R&D Program of China under Grant 2018AAA0102503, Zhejiang Lab (NO.2019NB0AB01), Beijing Education Committee Cooperation Beijing Natural Science Foundation (No. KZ201910005007), National Natural Science Foundation of China (No. U1736219) and Peng Cheng Laboratory Project of Guangdong Province PCL2018KP004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqi Ren .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 10172 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, X. et al. (2020). Face Super-Resolution Guided by 3D Facial Priors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58548-8_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58547-1

  • Online ISBN: 978-3-030-58548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics