Abstract
Although deep networks achieve strong accuracy on a range of computer vision benchmarks, they remain vulnerable to adversarial attacks, where imperceptible input perturbations fool the network. We present both theoretical and empirical analyses that connect the adversarial robustness of a model to the number of tasks that it is trained on. Experiments on two datasets show that attack difficulty increases as the number of target tasks increase. Moreover, our results suggest that when models are trained on multiple tasks at once, they become more robust to adversarial attacks on individual tasks. While adversarial defense remains an open challenge, our results suggest that deep networks are vulnerable partly because they are trained on too few tasks.
A. Gupta and V. Nitin—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use the same dimension for baselines and ours during comparison because input dimension impacts robustness [46].
- 2.
Suffixed number indicates number of steps for attack.
References
Arnab, A., Miksik, O., Torr, P.H.: On the robustness of semantic segmentation models to adversarial attacks. In: CVPR (2018)
Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy, pp. 39–57 (2017)
Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: gradient normalization for adaptive loss balancing in deep multitask networks (2017)
Cisse, M., Adi, Y., Neverova, N., Keshet, J.: Houdini: fooling deep structured prediction models (2017)
Cissé, M., Bojanowski, P., Grave, E., Dauphin, Y., Usunier, N.: Parseval networks: improving robustness to adversarial examples. In: ICML, pp. 854–863 (2017)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Costales, R., Mao, C., Norwitz, R., Kim, B., Yang, J.: Live trojan attacks on deep neural networks (2020)
Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. arXiv:1708.07860 (2017)
Dong, Y., et al.: Boosting adversarial attacks with momentum. In: CVPR, pp. 9185–9193 (2018)
Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. C.R. Math. 350, 313–318 (2012)
Engstrom, L., et al.: A discussion of adversarial examples are not bugs, they are features. Distill 4(8) (2019)
Engstrom, L., Ilyas, A., Athalye, A.: Evaluating and understanding the robustness of adversarial logit pairing (2018)
Evgeniou, T., Pontil, M.: Regularized multi-task learning, pp. 109–117 (2004)
Glaßer, C., Reitwießner, C., Schmitz, H., Witek, M.: Approximability and hardness in multi-objective optimization. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 180–189. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13962-8_20
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv:1412.6572 (2014)
Gur, S., Wolf, L.: Single image depth estimation trained via depth from defocus cues. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv:1512.03385 (2015)
Kaiser, L., et al.: One model to learn them all (2017)
Kannan, H., Kurakin, A., Goodfellow, I.J.: Adversarial logit pairing (2018)
Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from noisy entries. In: NIPS (2009)
Kocabas, M., Karagoz, S., Akbas, E.: Multiposenet: fast multi-person pose estimation using pose residual network. In: CoRR (2018)
Kokkinos, I.: Ubernet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. arXiv:1609.02132 (2016)
Kumar, A., Daume III, H.: Learning task grouping and overlap in multi-task learning (2012)
Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. arXiv:1607.02533 (2017)
Lee, T., Ndirango, A.: Generalization in multitask deep neural classifiers: a statistical physics approach (2019)
Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. arXiv:1803.10704 (2018)
Liu, W., et al.: SSD: single shot multibox detector, pp. 21–37 (2016)
Liu, X., He, P., Chen, W., Gao, J.: Multi-task deep neural networks for natural language understanding. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. arXiv:1411.4038 (2014)
Luong, M.T., Le, Q.V., Sutskever, I., Vinyals, O., Kaiser, L.: Multi-task sequence to sequence learning (2015)
Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., Chi, E.: Modeling task relationships in multi-task learning with multi-gate mixture-of-experts, pp. 1930–1939 (2018)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2018)
Mao, C., Zhong, Z., Yang, J., Vondrick, C., Ray, B.: Metric learning for adversarial robustness (2019)
Metzen, J.H., Kumar, M.C., Brox, T., Fischer, V.: Universal adversarial perturbations against semantic image segmentation. In: ICCV (2017)
Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning (2016)
Pang, T., Xu, K., Du, C., Chen, N., Zhu, J.: Improving adversarial robustness via promoting ensemble diversity. arXiv:1901.08846 (2019)
Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. arXiv:1511.07528 (2015)
Ross, A.S., Doshi-Velez, F.: Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients. arXiv:1711.09404 (2017)
Samangouei, P., Kabkab, M., Chellappa, R.: Defense-GAN: protecting classifiers against adversarial attacks using generative models. arXiv:1805.06605 (2018)
Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., Madry, A.: Adversarially robust generalization requires more data. In: NeurIPS, pp. 5019–5031 (2018)
Schutze, O., Lara, A., Coello, C.A.C.: On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans. Evol. Comput. 15(4), 444–455 (2011)
Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization (2018)
Shen, G., Mao, C., Yang, J., Ray, B.: AdvSPADE: realistic unrestricted attacks for semantic segmentation (2019)
Simon-Gabriel, C.J., Ollivier, Y., Bottou, L., Schölkopf, B., Lopez-Paz, D.: First-order adversarial vulnerability of neural networks and input dimension. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 5809–5817 (2019)
Standley, T., Zamir, A.R., Chen, D., Guibas, L.J., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? arXiv:1905.07553 (2019)
Szegedy, C., et al.: Intriguing properties of neural networks. arXiv:1312.6199 (2013)
Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., McDaniel, P.D.: Ensemble adversarial training: attacks and defenses. arXiv:1705.07204 (2017)
Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy. In: International Conference on Learning Representations (2019)
Uesato, J., Alayrac, J., Huang, P., Stanforth, R., Fawzi, A., Kohli, P.: Are labels required for improving adversarial robustness? In: CoRR (2019)
Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: CoRR (2018)
Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: ICCV (2017)
Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: CoRR (2018)
Yan, Z., Guo, Y., Zhang, C.: Deep defense: training DNNs with improved adversarial robustness. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS 2018, pp. 417–426 (2018)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations (ICLR) (2016)
Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Computer Vision and Pattern Recognition (CVPR) (2017)
Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-task learning (2020)
Zamir, A.R., Sax, A., Shen, W.B., Guibas, L., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2018)
Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically principled trade-off between robustness and accuracy. arXiv:1901.08573 (2019)
Acknowledgements
This work was in part supported by a JP Morgan Faculty Research Award; a DiDi Faculty Research Award; a Google Cloud grant; an Amazon Web Services grant; an Amazon Research Award; NSF grant CNS-15-64055; NSF-CCF 1845893; NSF-IIS 1850069; ONR grants N00014-16-1- 2263 and N00014-17-1-2788. The authors thank Vaggelis Atlidakis, Augustine Cha, Dídac Surís, Lovish Chum, Justin Wong, and Shunhua Jiang for valuable comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mao, C. et al. (2020). Multitask Learning Strengthens Adversarial Robustness. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-58536-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58535-8
Online ISBN: 978-3-030-58536-5
eBook Packages: Computer ScienceComputer Science (R0)