Abstract
We tackle the problem of exploiting Radar for perception in the context of self-driving as Radar provides complementary information to other sensors such as LiDAR or cameras in the form of Doppler velocity. The main challenges of using Radar are the noise and measurement ambiguities which have been a struggle for existing simple input or output fusion methods. To better address this, we propose a new solution that exploits both LiDAR and Radar sensors for perception. Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion, which learn from data to exploit both geometric and dynamic information of Radar data. RadarNet achieves state-of-the-art results on two large-scale real-world datasets in the tasks of object detection and velocity estimation. We further show that exploiting Radar improves the perception capabilities of detecting faraway objects and understanding the motion of dynamic objects.
B. Yang and R. Guo—Equal contribution. Work done during RG’s internship at Uber ATG.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Blom, H.A., Bar-Shalom, Y.: The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Autom. Control 33, 780–783 (1988)
Caesar, H., et al.: nuScenes: ldataset for autonomous driving. In: CVPR (2020)
Chadwick, S., Maddetn, W., Newman, P.: Distant vehicle detection using radar and vision. In: ICRA (2019)
Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D object detection for autonomous driving. In: CVPR (2016)
Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: CVPR (2017)
Cho, H., Seo, Y.W., Kumar, B.V., Rajkumar, R.R.: A multi-sensor fusion system for moving object detection and tracking in urban driving environments. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1836–1843. IEEE (2014)
Danzer, A., Griebel, T., Bach, M., Dietmayer, K.: 2D car detection in radar data with pointNets. In: ITSC (2019)
Göhring, D., Wang, M., Schnürmacher, M., Ganjineh, T.: Radar/lidar sensor fusion for car-following on highways. In: ICRA (2011)
Hajri, H., Rahal, M.C.: Real time lidar and radar high-level fusion for obstacle detection and tracking with evaluation on a ground truth. Int. J. Mech. Mechatron. Eng. (2018)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
Kellner, D., Klappstein, J., Dietmayer, K.: Grid-based DBSCAN for clustering extended objects in radar data. In: IEEE Intelligent Vehicles Symposium (2012)
Kim, S., Lee, S., Doo, S., Shim, B.: Moving target classification in automotive radar systems using convolutional recurrent neural networks. In: 26th European Signal Processing Conference (EUSIPCO) (2018)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.: Joint 3D proposal generation and object detection from view aggregation. In: IROS (2018)
Kuang, H., Liu, X., Zhang, J., Fang, Z.: Multi-modality cascaded fusion technology for autonomous driving. In: 4th International Conference on Robotics and Automation Sciences (ICRAS) (2020)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: CVPR (2019)
Li, B.: 3D fully convolutional network for vehicle detection in point cloud. In: IROS (2017)
Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D lidar using fully convolutional network. In: RSS (2016)
Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 663–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_39
Liang, M., et al.: Object trajectory evolution for end-to-end perception and prediction. In: CVPR (2020)
Lim, T.Y., et al.: Radar and camera early fusion for vehicle detection in advanced driver assistance systems. In: Machine Learning for Autonomous Driving Workshop at the 33rd Conference on Neural Information Processing Systems (2019)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)
Lombacher, J., Laudt, K., Hahn, M., Dickmann, J., Wöhler, C.: Semantic radar grids. In: IEEE Intelligent Vehicles Symposium (IV) (2017)
Luo, W., Yang, B., Urtasun, R.: Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In: CVPR (2018)
Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: LaserNet: an efficient probabilistic 3D object detector for autonomous driving. In: CVPR (2019)
Meyer, M., Kuschk, G.: Deep learning based 3D object detection for automotive radar and camera. In: 16th European Radar Conference (EuRAD) (2019)
Nabati, R., Qi, H.: RRPN: radar region proposal network for object detection in autonomous vehicles. In: ICIP (2019)
Nobis, F., Geisslinger, M., Weber, M., Betz, J., Lienkamp, M.: A deep learning-based radar and camera sensor fusion architecture for object detection. In: Sensor Data Fusion: Trends, Solutions, Applications (SDF) (2019)
Patel, K., Rambach, K., Visentin, T., Rusev, D., Pfeiffer, M., Yang, B.: Deep learning-based object classification on automotive radar spectra. In: RadarConf (2019)
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: CVPR (2018)
Schumann, O., Hahn, M., Dickmann, J., Wöhler, C.: Semantic segmentation on radar point clouds. In: FUSION (2018)
Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR (2019)
Shi, W., Rajkumar, R.: Point-GNN: graph neural network for 3D object detection in a point cloud. In: CVPR (2020)
Simonelli, A., Bulo, S.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Disentangling monocular 3D object detection. In: ICCV (2019)
Skolnik, M.I.: Radar Handbook, 2nd edn. McGrawHill, LOndon (1990)
Sless, L., El Shlomo, B., Cohen, G., Oron, S.: Road scene understanding by occupancy grid learning from sparse radar clusters using semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)
Sun, S.L., Deng, Z.L.: Multi-sensor optimal information fusion Kalman filter. Automatica 40(6), 1017–1023 (2004)
Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
Vora, S., Lang, A.H., Helou, B., Beijbom, O.: PointPainting: sequential fusion for 3D object detection. In: CVPR (2020)
Weng, X., Kitani, K.: Monocular 3D object detection with pseudo-lidar point cloud. In: ICCVW (2019)
Wöhler, C., Schumann, O., Hahn, M., Dickmann, J.: Comparison of random forest and long short-term memory network performances in classification tasks using radar. In: Sensor Data Fusion: Trends, Solutions, Applications (SDF) (2017)
Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18, 3337 (2018)
Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point clouds. In: CVPR (2018)
Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: CVPR (2020)
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR (2018)
Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling for point cloud 3D object detection. arXiv preprint arXiv:1908.09492 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 34368 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, B., Guo, R., Liang, M., Casas, S., Urtasun, R. (2020). RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-58523-5_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58522-8
Online ISBN: 978-3-030-58523-5
eBook Packages: Computer ScienceComputer Science (R0)