RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects | SpringerLink
Skip to main content

RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12363))

Included in the following conference series:

Abstract

We tackle the problem of exploiting Radar for perception in the context of self-driving as Radar provides complementary information to other sensors such as LiDAR or cameras in the form of Doppler velocity. The main challenges of using Radar are the noise and measurement ambiguities which have been a struggle for existing simple input or output fusion methods. To better address this, we propose a new solution that exploits both LiDAR and Radar sensors for perception. Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion, which learn from data to exploit both geometric and dynamic information of Radar data. RadarNet achieves state-of-the-art results on two large-scale real-world datasets in the tasks of object detection and velocity estimation. We further show that exploiting Radar improves the perception capabilities of detecting faraway objects and understanding the motion of dynamic objects.

B. Yang and R. Guo—Equal contribution. Work done during RG’s internship at Uber ATG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  2. Blom, H.A., Bar-Shalom, Y.: The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Autom. Control 33, 780–783 (1988)

    Article  Google Scholar 

  3. Caesar, H., et al.: nuScenes: ldataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  4. Chadwick, S., Maddetn, W., Newman, P.: Distant vehicle detection using radar and vision. In: ICRA (2019)

    Google Scholar 

  5. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D object detection for autonomous driving. In: CVPR (2016)

    Google Scholar 

  6. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: CVPR (2017)

    Google Scholar 

  7. Cho, H., Seo, Y.W., Kumar, B.V., Rajkumar, R.R.: A multi-sensor fusion system for moving object detection and tracking in urban driving environments. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1836–1843. IEEE (2014)

    Google Scholar 

  8. Danzer, A., Griebel, T., Bach, M., Dietmayer, K.: 2D car detection in radar data with pointNets. In: ITSC (2019)

    Google Scholar 

  9. Göhring, D., Wang, M., Schnürmacher, M., Ganjineh, T.: Radar/lidar sensor fusion for car-following on highways. In: ICRA (2011)

    Google Scholar 

  10. Hajri, H., Rahal, M.C.: Real time lidar and radar high-level fusion for obstacle detection and tracking with evaluation on a ground truth. Int. J. Mech. Mechatron. Eng. (2018)

    Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  12. Kellner, D., Klappstein, J., Dietmayer, K.: Grid-based DBSCAN for clustering extended objects in radar data. In: IEEE Intelligent Vehicles Symposium (2012)

    Google Scholar 

  13. Kim, S., Lee, S., Doo, S., Shim, B.: Moving target classification in automotive radar systems using convolutional recurrent neural networks. In: 26th European Signal Processing Conference (EUSIPCO) (2018)

    Google Scholar 

  14. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  15. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.: Joint 3D proposal generation and object detection from view aggregation. In: IROS (2018)

    Google Scholar 

  16. Kuang, H., Liu, X., Zhang, J., Fang, Z.: Multi-modality cascaded fusion technology for autonomous driving. In: 4th International Conference on Robotics and Automation Sciences (ICRAS) (2020)

    Google Scholar 

  17. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: CVPR (2019)

    Google Scholar 

  18. Li, B.: 3D fully convolutional network for vehicle detection in point cloud. In: IROS (2017)

    Google Scholar 

  19. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D lidar using fully convolutional network. In: RSS (2016)

    Google Scholar 

  20. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 663–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_39

    Chapter  Google Scholar 

  21. Liang, M., et al.: Object trajectory evolution for end-to-end perception and prediction. In: CVPR (2020)

    Google Scholar 

  22. Lim, T.Y., et al.: Radar and camera early fusion for vehicle detection in advanced driver assistance systems. In: Machine Learning for Autonomous Driving Workshop at the 33rd Conference on Neural Information Processing Systems (2019)

    Google Scholar 

  23. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  24. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  25. Lombacher, J., Laudt, K., Hahn, M., Dickmann, J., Wöhler, C.: Semantic radar grids. In: IEEE Intelligent Vehicles Symposium (IV) (2017)

    Google Scholar 

  26. Luo, W., Yang, B., Urtasun, R.: Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In: CVPR (2018)

    Google Scholar 

  27. Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: LaserNet: an efficient probabilistic 3D object detector for autonomous driving. In: CVPR (2019)

    Google Scholar 

  28. Meyer, M., Kuschk, G.: Deep learning based 3D object detection for automotive radar and camera. In: 16th European Radar Conference (EuRAD) (2019)

    Google Scholar 

  29. Nabati, R., Qi, H.: RRPN: radar region proposal network for object detection in autonomous vehicles. In: ICIP (2019)

    Google Scholar 

  30. Nobis, F., Geisslinger, M., Weber, M., Betz, J., Lienkamp, M.: A deep learning-based radar and camera sensor fusion architecture for object detection. In: Sensor Data Fusion: Trends, Solutions, Applications (SDF) (2019)

    Google Scholar 

  31. Patel, K., Rambach, K., Visentin, T., Rusev, D., Pfeiffer, M., Yang, B.: Deep learning-based object classification on automotive radar spectra. In: RadarConf (2019)

    Google Scholar 

  32. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: CVPR (2018)

    Google Scholar 

  33. Schumann, O., Hahn, M., Dickmann, J., Wöhler, C.: Semantic segmentation on radar point clouds. In: FUSION (2018)

    Google Scholar 

  34. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR (2019)

    Google Scholar 

  35. Shi, W., Rajkumar, R.: Point-GNN: graph neural network for 3D object detection in a point cloud. In: CVPR (2020)

    Google Scholar 

  36. Simonelli, A., Bulo, S.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Disentangling monocular 3D object detection. In: ICCV (2019)

    Google Scholar 

  37. Skolnik, M.I.: Radar Handbook, 2nd edn. McGrawHill, LOndon (1990)

    Google Scholar 

  38. Sless, L., El Shlomo, B., Cohen, G., Oron, S.: Road scene understanding by occupancy grid learning from sparse radar clusters using semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  39. Sun, S.L., Deng, Z.L.: Multi-sensor optimal information fusion Kalman filter. Automatica 40(6), 1017–1023 (2004)

    Article  MathSciNet  Google Scholar 

  40. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  41. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: PointPainting: sequential fusion for 3D object detection. In: CVPR (2020)

    Google Scholar 

  42. Weng, X., Kitani, K.: Monocular 3D object detection with pseudo-lidar point cloud. In: ICCVW (2019)

    Google Scholar 

  43. Wöhler, C., Schumann, O., Hahn, M., Dickmann, J.: Comparison of random forest and long short-term memory network performances in classification tasks using radar. In: Sensor Data Fusion: Trends, Solutions, Applications (SDF) (2017)

    Google Scholar 

  44. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18, 3337 (2018)

    Article  Google Scholar 

  45. Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point clouds. In: CVPR (2018)

    Google Scholar 

  46. Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: CVPR (2020)

    Google Scholar 

  47. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR (2018)

    Google Scholar 

  48. Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling for point cloud 3D object detection. arXiv preprint arXiv:1908.09492 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 34368 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, B., Guo, R., Liang, M., Casas, S., Urtasun, R. (2020). RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics