Abstract
This research presents a novel methodology for the forecasting of copper prices using as input information the values of this non-ferrous material and the prices of other raw materials. The proposed methodology is based on the use of multiple imputation with chained equations (MICE) in order to forecast the values of the missing data and then to train multivariate adaptive regression splines models capable of predicting the price of copper in advance. The performance of the method was tested with the help of a database of the monthly prices of 72 different raw materials, including copper. The information available starts on January 1960. The prediction of prices from September 2018 to August 2019 showed a root mean squared error (RMSE) value of 318.7996, a mean absolute percentage error (MAPE) of 0.0418 and a mean absolute error (MAE) of 252.8567. The main strengths of the proposed algorithm are two-fold. On the one hand, it can be applied in a systematic way and the results are obtained without any human with expert knowledge having to take any decision; on the other hand, all the trained models are MARS. This means that the models are equations that can be read and understood, and not black box models like artificial neural networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Iglesias García, C., Sáiz Martinez, P., García-Portilla González, M.P., Bousoño García, M., Jiménez Treviño, L., Sánchez Lasheras, F., Bobes, J.: Effects of the economic crisis on demand due to mental disorders in Asturias: data from the Asturias Cumulative Psychiatric Case Register (2000–2010). Actas Esp. Psiquiatr. 42, 108–15 (2014)
Sánchez Lasheras, F., de Cos Juez, F.J., Suárez Sánchez, A., Krzemien, A., Riesgo Fernández, P.: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models. Resour. Policy 45, 37–43 (2015)
Tilton, J.E., Lagos, G.: Assessing the long-run availability of copper. Resour. Policy 32, 19–23 (2007)
Ma, W., Zhu, X., Wang, M.: Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm. Resour. Policy 38, 613–620 (2013)
Riesgo García, M.V., Krzemień, A., Manzanedo del Campo, M.Á., Escanciano García-Miranda, C., Sánchez Lasheras, F.: Rare earth elements price forecasting by means of transgenic time series developed with ARIMA models. Resour. Policy 59, 95–102 (2018)
Krzemień, A., Riesgo Fernández, P., Suárez Sánchez, A., Sánchez Lasheras, F.: Forecasting European thermal coal spot prices. J. Sustain. Min. 14, 203–210 (2015)
Suárez Sánchez, A., Krzemień, A., Riesgo Fernández, P., Iglesias Rodríguez, F.J., Sánchez Lasheras, F., de Cos Juez, F.J.: Investment in new tungsten mining projects. Resour. Policy 46, 177–190 (2015)
Dooley, G., Lenihan, H.: An assessment of time series methods in metal price forecasting. Resour. Policy 30, 208–217 (2005)
Kriechbaumer, T., Angus, A., Parsons, D., Rivas Casado, M.: An improved wavelet–ARIMA approach for forecasting metal prices. Resour. Policy 39, 32–41 (2014)
Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl. 37, 479–489 (2010)
World Bank Data. https://www.worldbank.org/en/research/commodity-markets Accessed 2 Jan 2020
Azur, M.J., Stuart, E.A., Frangakis, C., Leaf, P.J.: Multiple imputation by chained equations: what is it and how does it work? Int. J. Meth. Psy. Res. 20(1), 40–49 (2011)
van Buuren, S., Groothuis-Oudshoorn, K.: mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45(i03) (2011)
Crespo Turrado, C., Sánchez Lasheras, F., Calvo-Rollé, J.L., Piñón-Pazos, A.J., de Cos Juez, F.J.: A new missing data imputation algorithm applied to electrical data loggers. Sensors 15, 31069–31082 (2015)
de Cos Juez, F.J., Sánchez Lasheras, F., García Nieto, P.J., Álvarez-Arenal, A.: Non-linear numerical analysis of a double-threaded titanium alloy dental implant by FEM. Appl. Math. Comput. 206, 952–967 (2008)
Ordóñez Galán. C., Sánchez Lasheras, F., de Cos Juez, F. J., Bernardo Sánchez, A.: Missing data imputation of questionnaires by means of genetic algorithms with different fitness functions. J. Comput. Appl. Math. 311, 704–717 (2017)
Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–141 (1991)
de Andrés, J., Sánchez-Lasheras, F., Lorca, P., de Cos Juez, F.J.: A hybrid device of self organizing maps (som) and multivariate adaptive regression splines (mars) for the forecasting of firms’ bankruptcy. J. Account. Manag. Inf. Syst. 10, 351–374 (2011)
Garcia Nieto, P.J., Sánchez Lasheras, F., de Cos Juez, F.J., Alonso Fernández, J.R.: Study of cyanotoxins presence from experimental cyanobacteria concentrations using a new data mining methodology based on multivariate adaptive regression splines in Trasona reservoir (Northern Spain). J. Hazard. Mater. 195, 414–421 (2011)
Sekulic, S., Kowalski, B.R.: MARS: a tutorial. J. Chemometr. 6, 199–216 (1992)
García Nieto, P.J., Sánchez Lasheras, F., García-Gonzalo, E., de Cos Juez, F.J.: PM10 concentration forecasting in the metropolitan area of Oviedo (Northern Spain) using models based on SVM, MLP, VARMA and ARIMA: a case study. Sci. Total Environ. 621, 753–761 (2018)
de Cos Juez, F.J., Lasheras, F.S., Roqueñí, N., Osborn, J.: An ANN-based smart tomographic reconstructor in a dynamic environment. Sensors 12, 8895–8911 (2012)
Krzemień, A.: Fire risk prevention in underground coal gasification (UCG) within active mines: temperature forecast by means of MARS models. Energy 170, 777–790 (2019)
Krzemień, A.: Dynamic fire risk prevention strategy in underground coal gasification processes by means of artificial neural networks. Arch. Min. Sci. 64(1), 3–19 (2019)
Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecasting. 22, 679–688 (2006)
Ordóñez Galan, C., Sánchez Lasheras, F., Roca Pardiña, J., de Cos Juez, F.J.: A hybrid ARIMA-SVM model for the study of the remaning useful life of aircraft engines. J. Comput. Appl. Math. 346, 184–191 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sánchez Lasheras, F., Gracia Rodríguez, J., García Nieto, P.J., García-Gonzalo, E., Fidalgo Valverde, G. (2021). A Multivariate Approach to Time Series Forecasting of Copper Prices with the Help of Multiple Imputation by Chained Equations and Multivariate Adaptive Regression Splines. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_66
Download citation
DOI: https://doi.org/10.1007/978-3-030-57802-2_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57801-5
Online ISBN: 978-3-030-57802-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)