A Multivariate Approach to Time Series Forecasting of Copper Prices with the Help of Multiple Imputation by Chained Equations and Multivariate Adaptive Regression Splines | SpringerLink
Skip to main content

A Multivariate Approach to Time Series Forecasting of Copper Prices with the Help of Multiple Imputation by Chained Equations and Multivariate Adaptive Regression Splines

  • Conference paper
  • First Online:
15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020) (SOCO 2020)

Abstract

This research presents a novel methodology for the forecasting of copper prices using as input information the values of this non-ferrous material and the prices of other raw materials. The proposed methodology is based on the use of multiple imputation with chained equations (MICE) in order to forecast the values of the missing data and then to train multivariate adaptive regression splines models capable of predicting the price of copper in advance. The performance of the method was tested with the help of a database of the monthly prices of 72 different raw materials, including copper. The information available starts on January 1960. The prediction of prices from September 2018 to August 2019 showed a root mean squared error (RMSE) value of 318.7996, a mean absolute percentage error (MAPE) of 0.0418 and a mean absolute error (MAE) of 252.8567. The main strengths of the proposed algorithm are two-fold. On the one hand, it can be applied in a systematic way and the results are obtained without any human with expert knowledge having to take any decision; on the other hand, all the trained models are MARS. This means that the models are equations that can be read and understood, and not black box models like artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iglesias García, C., Sáiz Martinez, P., García-Portilla González, M.P., Bousoño García, M., Jiménez Treviño, L., Sánchez Lasheras, F., Bobes, J.: Effects of the economic crisis on demand due to mental disorders in Asturias: data from the Asturias Cumulative Psychiatric Case Register (2000–2010). Actas Esp. Psiquiatr. 42, 108–15 (2014)

    Google Scholar 

  2. Sánchez Lasheras, F., de Cos Juez, F.J., Suárez Sánchez, A., Krzemien, A., Riesgo Fernández, P.: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models. Resour. Policy 45, 37–43 (2015)

    Article  Google Scholar 

  3. Tilton, J.E., Lagos, G.: Assessing the long-run availability of copper. Resour. Policy 32, 19–23 (2007)

    Article  Google Scholar 

  4. Ma, W., Zhu, X., Wang, M.: Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm. Resour. Policy 38, 613–620 (2013)

    Article  Google Scholar 

  5. Riesgo García, M.V., Krzemień, A., Manzanedo del Campo, M.Á., Escanciano García-Miranda, C., Sánchez Lasheras, F.: Rare earth elements price forecasting by means of transgenic time series developed with ARIMA models. Resour. Policy 59, 95–102 (2018)

    Google Scholar 

  6. Krzemień, A., Riesgo Fernández, P., Suárez Sánchez, A., Sánchez Lasheras, F.: Forecasting European thermal coal spot prices. J. Sustain. Min. 14, 203–210 (2015)

    Article  Google Scholar 

  7. Suárez Sánchez, A., Krzemień, A., Riesgo Fernández, P., Iglesias Rodríguez, F.J., Sánchez Lasheras, F., de Cos Juez, F.J.: Investment in new tungsten mining projects. Resour. Policy 46, 177–190 (2015)

    Article  Google Scholar 

  8. Dooley, G., Lenihan, H.: An assessment of time series methods in metal price forecasting. Resour. Policy 30, 208–217 (2005)

    Article  Google Scholar 

  9. Kriechbaumer, T., Angus, A., Parsons, D., Rivas Casado, M.: An improved wavelet–ARIMA approach for forecasting metal prices. Resour. Policy 39, 32–41 (2014)

    Article  Google Scholar 

  10. Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl. 37, 479–489 (2010)

    Article  Google Scholar 

  11. World Bank Data. https://www.worldbank.org/en/research/commodity-markets Accessed 2 Jan 2020

  12. Azur, M.J., Stuart, E.A., Frangakis, C., Leaf, P.J.: Multiple imputation by chained equations: what is it and how does it work? Int. J. Meth. Psy. Res. 20(1), 40–49 (2011)

    Article  Google Scholar 

  13. van Buuren, S., Groothuis-Oudshoorn, K.: mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45(i03) (2011)

    Google Scholar 

  14. Crespo Turrado, C., Sánchez Lasheras, F., Calvo-Rollé, J.L., Piñón-Pazos, A.J., de Cos Juez, F.J.: A new missing data imputation algorithm applied to electrical data loggers. Sensors 15, 31069–31082 (2015)

    Article  Google Scholar 

  15. de Cos Juez, F.J., Sánchez Lasheras, F., García Nieto, P.J., Álvarez-Arenal, A.: Non-linear numerical analysis of a double-threaded titanium alloy dental implant by FEM. Appl. Math. Comput. 206, 952–967 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Ordóñez Galán. C., Sánchez Lasheras, F., de Cos Juez, F. J., Bernardo Sánchez, A.: Missing data imputation of questionnaires by means of genetic algorithms with different fitness functions. J. Comput. Appl. Math. 311, 704–717 (2017)

    Google Scholar 

  17. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–141 (1991)

    Article  MathSciNet  Google Scholar 

  18. de Andrés, J., Sánchez-Lasheras, F., Lorca, P., de Cos Juez, F.J.: A hybrid device of self organizing maps (som) and multivariate adaptive regression splines (mars) for the forecasting of firms’ bankruptcy. J. Account. Manag. Inf. Syst. 10, 351–374 (2011)

    Google Scholar 

  19. Garcia Nieto, P.J., Sánchez Lasheras, F., de Cos Juez, F.J., Alonso Fernández, J.R.: Study of cyanotoxins presence from experimental cyanobacteria concentrations using a new data mining methodology based on multivariate adaptive regression splines in Trasona reservoir (Northern Spain). J. Hazard. Mater. 195, 414–421 (2011)

    Article  Google Scholar 

  20. Sekulic, S., Kowalski, B.R.: MARS: a tutorial. J. Chemometr. 6, 199–216 (1992)

    Article  Google Scholar 

  21. García Nieto, P.J., Sánchez Lasheras, F., García-Gonzalo, E., de Cos Juez, F.J.: PM10 concentration forecasting in the metropolitan area of Oviedo (Northern Spain) using models based on SVM, MLP, VARMA and ARIMA: a case study. Sci. Total Environ. 621, 753–761 (2018)

    Article  Google Scholar 

  22. de Cos Juez, F.J., Lasheras, F.S., Roqueñí, N., Osborn, J.: An ANN-based smart tomographic reconstructor in a dynamic environment. Sensors 12, 8895–8911 (2012)

    Article  Google Scholar 

  23. Krzemień, A.: Fire risk prevention in underground coal gasification (UCG) within active mines: temperature forecast by means of MARS models. Energy 170, 777–790 (2019)

    Article  Google Scholar 

  24. Krzemień, A.: Dynamic fire risk prevention strategy in underground coal gasification processes by means of artificial neural networks. Arch. Min. Sci. 64(1), 3–19 (2019)

    Google Scholar 

  25. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecasting. 22, 679–688 (2006)

    Article  Google Scholar 

  26. Ordóñez Galan, C., Sánchez Lasheras, F., Roca Pardiña, J., de Cos Juez, F.J.: A hybrid ARIMA-SVM model for the study of the remaning useful life of aircraft engines. J. Comput. Appl. Math. 346, 184–191 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Sánchez Lasheras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez Lasheras, F., Gracia Rodríguez, J., García Nieto, P.J., García-Gonzalo, E., Fidalgo Valverde, G. (2021). A Multivariate Approach to Time Series Forecasting of Copper Prices with the Help of Multiple Imputation by Chained Equations and Multivariate Adaptive Regression Splines. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_66

Download citation

Publish with us

Policies and ethics