Mobile Phone Usage Data for Credit Scoring | SpringerLink
Skip to main content

Mobile Phone Usage Data for Credit Scoring

  • Conference paper
  • First Online:
Databases and Information Systems (DB&IS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1243))

Included in the following conference series:

Abstract

The aim of this study is to demostrate that mobile phone usage data can be used to make predictions and find the best classification method for credit scoring even if the dataset is small (2,503 customers). We use different classification algorithms to split customers into paying and non-paying ones using mobile data, and then compare the predicted results with actual results. There are several related works publicly accessible in which mobile data has been used for credit scoring, but they are all based on a large dataset. Small companies are unable to use datasets as large as those used by these related papers, therefore these studies are of little use for them. In this paper we try to argue that there is value in mobile phone usage data for credit scoring even if the dataset is small. We found that with a dataset that consists of mobile data based only on 2,503 customers, we can predict credit risk. The best classification method gave us the result 0.62 AUC (area under the curve).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, R.: The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation. Oxford University Press, New YorK (2007)

    Google Scholar 

  2. Arteaga, S.M., Kudeki, M., Woodworth, A.: Combating obesity trends in teenagers through persuasive mobile technology. ACM SIGACCESS Accessibility Comput. 94, 17–25 (2009)

    Article  Google Scholar 

  3. Back, M.D., Stopfer, J.M., Vazire, S., Gaddis, S., Schmukle, S.C., Egloff, B., Gosling, S.D.: Facebook profiles reflect actual personality, not self-idealization. Psychol. Sci. 21(3), 372–374 (2010)

    Article  Google Scholar 

  4. Banasiak, M.J., Kiely, G.: Predictive collection score technology. Bus. Credit 102(2), 18–34 (2000)

    Google Scholar 

  5. Barisitz, S., et al.: Nonperforming loans in cesee-what do they comprise. Focus Eur. Econ. Integr. Q 4, 46–68 (2011)

    Google Scholar 

  6. Björkegren, D., Grissen, D.: The development of credit scoring quality measures for consumer credit applications. In: Netmob (2013)

    Google Scholar 

  7. Chittaranjan, G., Blom, J., Gatica-Perez, D.: Mining large-scale smartphone data for personality studies. Pers. Ubiquit. Comput. 17(3), 433–450 (2013)

    Article  Google Scholar 

  8. Counts, S., Stecher, K.: Self-presentation of personality during online profile creation. In: Third International AAAI Conference on Weblogs and Social Media (2009)

    Google Scholar 

  9. Crook, J.N., Edelman, D.B., Thomas, L.C.: Recent developments in consumer credit risk assessment. Eur. J. Oper. Res. 183(3), 1447–1465 (2007)

    Article  MathSciNet  Google Scholar 

  10. De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3, 1376 (2013)

    Article  Google Scholar 

  11. Do, T.M.T., Gatica-Perez, D.: By their apps you shall understand them: mining large-scale patterns of mobile phone usage. In: Proceedings of the 9th International Conference on Mobile and Ubiquitous Multimedia, pp. 1–10 (2010)

    Google Scholar 

  12. Goldman, D.: Your phone company is selling your personal data. CNN Money 1 (2011)

    Google Scholar 

  13. Guyon, I.: A scaling law for the validation-set training-set size ratio. AT&T Bell Laboratories, vol. 1, p. 11 (1997)

    Google Scholar 

  14. Harris, T.: Quantitative credit risk assessment using support vector machines: broad versus narrow default definitions. Expert Syst. Appl. 40(11), 4404–4413 (2013)

    Article  Google Scholar 

  15. Harris, T.: Credit scoring using the clustered support vector machine. Expert Syst. Appl. 42(2), 741–750 (2015)

    Article  Google Scholar 

  16. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf. Process. Lett. 24, 377–380 (1987)

    Article  MathSciNet  Google Scholar 

  17. Hodgson, C.: The world’s 2 billion unbanked, in 6 charts, Business Insider UK (2017). www.businessinsider.com/the-worlds-unbanked-population-in-6-charts-2017-8

  18. Lance, W.: 2011 ends with almost 6 billion mobile phone subscriptions, CNET News (2012). www.cnet.com/news/2011-ends-with-almost-6-billion-mobile-phone-subscriptions/

  19. Leonard, K.J.: The development of credit scoring quality measures for consumer credit applications. Int. J. Qual. Reliab. Manage. 12, 79 (1995)

    Article  Google Scholar 

  20. Ma, L., Zhao, X., Zhou, Z., Liu, Y.: A new aspect on p2p online lending default prediction using meta-level phone usage data in China. Decis. Support Syst. 111, 60–71 (2018)

    Article  Google Scholar 

  21. Mironchyk, P., Tchistiakov, V.: Monotone optimal binning algorithm for credit risk modeling. Technical report, Utrecht: Working Paper (2017)

    Google Scholar 

  22. de Montjoye, Y.-A., Quoidbach, J., Robic, F., Pentland, A.S.: Predicting personality using novel mobile phone-based metrics. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 48–55. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37210-0_6

    Chapter  Google Scholar 

  23. de Oliveira, R., Karatzoglou, A., Concejero Cerezo, P., Armenta Lopez de Vicuña, A., Oliver, N.: Towards a psychographic user model from mobile phone usage. In: CHI 2011 Extended Abstracts on Human Factors in Computing Systems, pp. 2191–2196 (2011)

    Google Scholar 

  24. Óskarsdóttir, M., Bravo, C., Sarraute, C., Vanthienen, J., Baesens, B.: The value of big data for credit scoring: enhancing financial inclusion using mobile phone data and social network analytics. Appl. Soft Comput. 74, 26–39 (2019)

    Article  Google Scholar 

  25. Pianesi, F., Mana, N., Cappelletti, A., Lepri, B., Zancanaro, M.: Multimodal recognition of personality traits in social interactions. In: Proceedings of the 10th International Conference on Multimodal Interfaces, pp. 53–60 (2008)

    Google Scholar 

  26. Rimmer, J.: Contemporary changes in credit scoring. Credit Control 26(4), 56–60 (2005)

    Google Scholar 

  27. Pedro, J.S., Proserpio, D., Oliver, N.: MobiScore: towards universal credit scoring from mobile phone data. In: Ricci, F., Bontcheva, K., Conlan, O., Lawless, S. (eds.) UMAP 2015. LNCS, vol. 9146, pp. 195–207. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20267-9_16

    Chapter  Google Scholar 

  28. Shema, A.: Effective credit scoring using limited mobile phone data. In: Proceedings of the Tenth International Conference on Information and Communication Technologies and Development, pp. 1–11 (2019)

    Google Scholar 

  29. Speakman, S., Mibuari, E., Markus, I., Kwizera, F.: Mobile phone-based credit scoring. NetMob Book of Abstracts (2017)

    Google Scholar 

  30. Staiano, J., Lepri, B., Aharony, N., Pianesi, F., Sebe, N., Pentland, A.: Friends don’t lie: inferring personality traits from social network structure. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 321–330 (2012)

    Google Scholar 

  31. Stecher, K.B., Counts, S.: Spontaneous inference of personality traits and effects on memory for online profiles. In: International AAAI Conference on Weblogs and Social Media (ICWSM) (2008)

    Google Scholar 

  32. Thomas, L.C.: A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. Int. J. Forecast. 16(2), 149–172 (2000)

    Article  Google Scholar 

  33. Verkasalo, H., López-Nicolás, C., Molina-Castillo, F.J., Bouwman, H.: Analysis of users and non-users of smartphone applications. Telematics Inform. 27(3), 242–255 (2010)

    Article  Google Scholar 

  34. Wendel, C., Harvey, M.: Credit scoring: best practices and approaches. Commercial Lending Rev. 18, 4 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Ots .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ots, H., Liiv, I., Tur, D. (2020). Mobile Phone Usage Data for Credit Scoring. In: Robal, T., Haav, HM., Penjam, J., Matulevičius, R. (eds) Databases and Information Systems. DB&IS 2020. Communications in Computer and Information Science, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-57672-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57672-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57671-4

  • Online ISBN: 978-3-030-57672-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics