A Fuzzy Crow Search Algorithm for Solving Data Clustering Problem | SpringerLink
Skip to main content

A Fuzzy Crow Search Algorithm for Solving Data Clustering Problem

  • Conference paper
  • First Online:
Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices (IEA/AIE 2020)

Abstract

The crow is one of the most intelligent bird and infamous for observing other birds so that they can steal their food. The crow search algorithm (CSA), a nature-based optimizer, is inspired by the social behavior of crows. Scholars have applied the CSA to obtain efficient solutions to certain function and combinatorial optimization problems. Another popular and powerful method with several real-world applications (e.g., energy, finance, marketing, and medical imaging) is fuzzy clustering. The fuzzy c-means (FCM) algorithm is a critical fuzzy clustering approach given its efficiency and implementation easily. However, the FCM algorithm can be easily trapped in the local optima. To solve this data clustering problem, this study proposes a hybrid fuzzy clustering algorithm combines the CSA and a fireworks algorithm. The algorithm performance is evaluated using eight well-known UCI benchmarks. The experimental analysis concludes that adding the fireworks algorithm improved the CSA’s performance and offered better solutions than those by other meta-heuristic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, H., Zhao, R., Fang, H., Cheng, F., Yun, F., Liu, Y.-Y.: Entropy-based consensus clustering for patient stratification. Bioinformatics 33(17), 2691–2698 (2017)

    Article  Google Scholar 

  2. Nguyen, T.P.Q., Kuo, R.J.: Partition-and-merge based fuzzy genetic clustering algorithm for categorical data. Appl. Soft Comput. 75, 254–264 (2019)

    Article  Google Scholar 

  3. Mistry, K., Zhang, L., Neoh, S.C., Lim, C.P., Fielding, B.: A micro-GA embedded pso feature selection approach to intelligent facial emotion recognition. IEEE Trans. Cybern. 47(6), 1496–1509 (2017)

    Article  Google Scholar 

  4. Perone, C.S., Ballester, P., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. NeuroImage 194, 1–11 (2019)

    Article  Google Scholar 

  5. Liu, H., Li, J., Wu, Y., Fu, Y.: Clustering with outlier removal. IEEE Trans. Knowl. Data Eng. (2019)

    Google Scholar 

  6. Gan, W., Lin, J.C.W., Fournier-Viger, P., Chao, H.C., Philip, S.Y.: HUOPM: high-utility occupancy pattern mining. IEEE Trans. Cybern. 50, 1195–1208 (2019)

    Article  Google Scholar 

  7. Lin, J.C.W., Yang, L., Fournier-Viger, P., Hong, T.P.: Mining of skyline patterns by considering both frequent and utility constraints. Eng. Appl. Artif. Intell. 77, 229–238 (2019)

    Article  Google Scholar 

  8. Zhou, Y., Wang, N., Xiang, W.: Clustering hierarchy protocol in wireless sensor networks using an improved PSO algorithm. IEEE Access 5, 2241–2253 (2017)

    Article  Google Scholar 

  9. Wang, J., Gao, Y., Liu, W., Sangaiah, A.K., Kim, H.J.: An improved routing schema with special clustering using pso algorithm for heterogeneous wireless sensor network. Sensors 19(3), 671 (2019)

    Article  Google Scholar 

  10. Yang, Q., Yang, N., Browning, T.R., Jiang, B., Yao, T.: Clustering product development project organization from the perspective of social network analysis. IEEE Trans. Eng. Manag. (2019)

    Google Scholar 

  11. Chiranjeevi, K., Jena, U., Prasad, P.M.K.: Hybrid cuckoo search based evolutionary vector quantization for image compression. In: Lu, H., Li, Y. (eds.) Artificial Intelligence and Computer Vision. SCI, vol. 672, pp. 89–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46245-5_7

    Chapter  Google Scholar 

  12. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  13. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: The 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  14. Krishnan, M., Yun, S., Jung, Y.M.: Enhanced clustering and ACO-based multiple mobile sinks for efficiency improvement of wireless sensor networks. Comput. Netw. 160, 33–40 (2019)

    Article  Google Scholar 

  15. Zhao, F., Chen, Y., Liu, H., Fan, J.: Alternate PSO-based adaptive interval type-2 intuitionistic fuzzy C-means clustering algorithm for color image segmentation. IEEE Access 7, 64028–64039 (2019)

    Article  Google Scholar 

  16. Wu, Z.X., Huang, K.W., Chen, J.L., Yang, C.S.: A memetic fuzzy whale optimization algorithm for data clustering. In: IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10–13 June 2019, pp. 1446–1452. IEEE (2019)

    Google Scholar 

  17. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44

    Chapter  Google Scholar 

  18. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  19. Izakian, H., Abraham, A.: Fuzzy C-means and fuzzy swarm for fuzzy clustering problem. Expert Syst. Appl. 38(3), 1835–1838 (2011)

    Article  Google Scholar 

  20. Bezdek, J.C.: Fuzzy mathematics in pattern classification. Ph. D. Dissertation, Applied Mathematics, Cornell University (1973)

    Google Scholar 

  21. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Article  Google Scholar 

  22. Li, J., Zheng, S., Tan, Y.: Adaptive fireworks algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 3214–3221. IEEE (2014)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Ministry of Science and Technology of Taiwan, under grants MOST 108-2221-E-006-111-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko-Wei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, ZX., Huang, KW., Yang, CS. (2020). A Fuzzy Crow Search Algorithm for Solving Data Clustering Problem. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds) Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science(), vol 12144. Springer, Cham. https://doi.org/10.1007/978-3-030-55789-8_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55789-8_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55788-1

  • Online ISBN: 978-3-030-55789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics