Abstract
Depth estimation from a single image plays an important role in computer vision. Using semantic information for depth estimation becomes a research hotspot. The traditional neural network-based semantic method only divides the image according to the features, and cannot understand the deep background knowledge about the real world. In recent years, the knowledge graph is proposed and used for model semantic knowledge. In this paper, we enhance the traditional depth prediction method by analyzing the semantic information of the image through the knowledge graph. Background knowledge from the knowledge graph is used to enhance the results of semantic segmentation, and further improve the depth estimation results. We conducted experiments on the KITTI driving dataset, and the results showed that our method outperformed the previous unsupervised learning methods and supervised learning methods. The result of the Apollo dataset demonstrates that our method can perform in the common case.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brazil, G., Yin, X., Liu, X.: Illuminating pedestrians via simultaneous detection & segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4950–4959 (2017)
Chen, L.C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: MaskLab: instance segmentation by refining object detection with semantic and direction features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4013–4022 (2018)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)
Fang, Y., Kuan, K., Lin, J., Tan, C., Chandrasekhar, V.: Object detection meets knowledge graphs. In: International Joint Conference on Artificial Intelligence (2017)
Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45
Geiger, A.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Computer Vision and Pattern Recognition, pp. 6602–6611 (2017)
Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_20
Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311 (2017)
Lee, C.W., Fang, W., Yeh, C.K., Frank Wang, Y.C.: Multi-label zero-shot learning with structured knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1576–1585 (2018)
Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2024–2039 (2016)
Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints. In: Computer Vision and Pattern Recognition, pp. 5667–5675 (2018)
Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Computer Vision and Pattern Recognition, pp. 4040–4048 (2016)
Murartal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)
Ramirez, P.Z., Poggi, M., Tosi, F., Mattoccia, S., Di Stefano, L.: Geometry meets semantics for semi-supervised monocular depth estimation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 298–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_19
Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. In: Computer Vision and Pattern Recognition, pp. 6565–6574 (2017)
Wang, P., Huang, X., Cheng, X., Zhou, D., Geng, Q., Yang, R.: The ApolloScape open dataset for autonomous driving and its application. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Wang, X., Wang, S., Xin, Y., Yang, Y., Li, J., Wang, X.: Distributed Pregel-based provenance-aware regular path query processing on RDF knowledge graphs. World Wide Web, 1–32 (2019)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Yang, Y., Hallman, S., Ramanan, D., Fowlkes, C.C.: Layered object models for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1731–1743 (2011)
Liu, Z., Jiang, Z., Feng, W., Feng, H.: OD-GCN: object detection boosted by knowledge GCN. arXiv: Computer Vision and Pattern Recognition (2019)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Computer Vision and Pattern Recognition, pp. 6612–6619 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, Y., Jin, F., Wang, M., Wang, S. (2020). Knowledge Graphs Meet Geometry for Semi-supervised Monocular Depth Estimation. In: Li, G., Shen, H., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds) Knowledge Science, Engineering and Management. KSEM 2020. Lecture Notes in Computer Science(), vol 12274. Springer, Cham. https://doi.org/10.1007/978-3-030-55130-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-55130-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55129-2
Online ISBN: 978-3-030-55130-8
eBook Packages: Computer ScienceComputer Science (R0)