Distance Labeling Schemes for $$K_4$$ -Free Bridged Graphs | SpringerLink
Skip to main content

Distance Labeling Schemes for \(K_4\)-Free Bridged Graphs

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12156))

  • 345 Accesses

Abstract

k-Approximate distance labeling schemes are schemes that label the vertices of a graph with short labels in such a way that the k-approximation of the distance between any two vertices u and v can be determined efficiently by merely inspecting the labels of u and v, without using any other information. One of the important problems is finding natural classes of graphs admitting exact or approximate distance labeling schemes with labels of polylogarithmic size. In this paper, we show that the class of \(K_4\)-free bridged graphs on n nodes enjoys 4-approximate distance labeling scheme with labels of \(O(\log ^3 n)\) bits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bandelt, H.J., Chepoi, V.: A Helly theorem in weakly modular space. Discret. Math. 160(1–3), 25–39 (1996)

    Article  MathSciNet  Google Scholar 

  2. Bandelt, H.J., Chepoi, V.: The algebra of metric betweenness ii: axiomatics of weakly median graphs. Euro. J. Combin. 29, 676–700 (2008)

    Article  Google Scholar 

  3. Bandelt, H.J., Chepoi, V.: Metric graph theory and geometry: a survey. Contemp. Math. 453, 49–86 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bazzaro, F., Gavoille, C.: Localized and compact data-structure for comparability graphs. Discret. Math. 309, 3465–3484 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chalopin, J., Chepoi, V., Hirai, H., Osajda, D.: Weakly modular graphs and nonpositive curvature. Memoirs of AMS (2019)

    Google Scholar 

  6. Chepoi, V.: Graphs of some CAT(0) complexes. Adv. Appl. Math. 24, 125–179 (2000)

    Article  MathSciNet  Google Scholar 

  7. Chepoi, V.: Classification of graphs by means of metric triangles. Metody Diskret. Analiz. 45, 75–93 (1989)

    MathSciNet  Google Scholar 

  8. Chepoi, V., Dragan, F.F., Vaxès, Y.: Distance and routing labeling schemes for non-positively curved plane graphs. J. Algorithms 61, 60–88 (2006)

    Article  MathSciNet  Google Scholar 

  9. Chepoi, V., Labourel, A., Ratel, S.: Distance labeling schemes for cube-free median graphs. In: MFCS. vol. 138, pp. 15:1–15:14 (2019)

    Google Scholar 

  10. Courcelle, B., Vanicat, R.: Query efficient implementation of graphs of bounded clique-width. Discret. Appl. Math. 131, 129–150 (2003)

    Article  MathSciNet  Google Scholar 

  11. Farber, M., Jamison, R.E.: On local convexity in graphs. Discret. Math. 66(3), 231–247 (1987)

    Article  MathSciNet  Google Scholar 

  12. Freedman, O., Gawrychowski, P., Nicholson, P.K., Weimann, O.: Optimal distance labeling schemes for trees. In: PODC, pp. 185–194. ACM (2017)

    Google Scholar 

  13. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate distance labeling schemes. In: auf der Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476–487. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44676-1_40

    Chapter  Google Scholar 

  14. Gavoille, C., Paul, C.: Distance labeling scheme and split decomposition. Discret. Math. 273, 115–130 (2003)

    Article  MathSciNet  Google Scholar 

  15. Gavoille, C., Paul, C.: Optimal distance labeling for interval graphs and related graph families. SIAM J. Discret. Math. 22, 1239–1258 (2008)

    Article  MathSciNet  Google Scholar 

  16. Gavoille, C., Peleg, D., Pérennès, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53, 85–112 (2004)

    Article  MathSciNet  Google Scholar 

  17. Gawrychowski, P., Uznanski, P.: A note on distance labeling in planar graphs. CoRR abs/1611.06529 (2016). http://arxiv.org/abs/1611.06529

  18. Januszkiewicz, T., Świa̧tkowski, J.: Simplicial nonpositive curvature. Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 104(1), 1–85 (2006). https://doi.org/10.1007/s10240-006-0038-5

  19. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  20. Ratel, S.: Densité. Aix-Marseille Université, VC-dimension et étiquetages de graphes (2019)

    Google Scholar 

  21. Soltan, V.P., Chepoi, V.: Conditions for invariance of set diameters under \(d\)-convexification in a graph. Cybernetics 19(6), 750–756 (1983). https://doi.org/10.1007/BF01068561

    Article  MathSciNet  MATH  Google Scholar 

  22. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51, 993–1024 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The work on this paper was supported by ANR project DISTANCIA (ANR-17-CE40-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Labourel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chepoi, V., Labourel, A., Ratel, S. (2020). Distance Labeling Schemes for \(K_4\)-Free Bridged Graphs. In: Richa, A., Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2020. Lecture Notes in Computer Science(), vol 12156. Springer, Cham. https://doi.org/10.1007/978-3-030-54921-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54921-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54920-6

  • Online ISBN: 978-3-030-54921-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics