Pattern Sampling in Distributed Databases | SpringerLink
Skip to main content

Pattern Sampling in Distributed Databases

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12245))

Included in the following conference series:

  • 1473 Accesses

Abstract

Many applications rely on distributed databases. However, only few discovery methods exist to extract patterns without centralizing the data. In fact, this centralization is often less expensive than the communication of extracted patterns from the different nodes. To circumvent this difficulty, this paper revisits the problem of pattern mining in distributed databases by benefiting from pattern sampling. Specifically, we propose the algorithm DDSampling that randomly draws a pattern from a distributed database with a probability proportional to its interest. We demonstrate the soundness of DDSampling and analyze its time complexity. Finally, experiments on benchmark datasets highlight its low communication cost and its robustness. We also illustrate its interest on real-world data from the Semantic Web for detecting outlier entities in DBpedia and Wikidata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Hasan, M., Zaki, M.J.: Output space sampling for graph patterns. Proc. VLDB Endow. 2(1), 730–741 (2009)

    Article  Google Scholar 

  2. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)

    Article  Google Scholar 

  3. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling by efficient two-step random procedures. In: Proceedings of KDD, pp. 582–590 (2011)

    Google Scholar 

  4. Cheung, D.W., Ng, V.T., Fu, A.W., Fu, Y.: Efficient mining of association rules in distributed databases. IEEE Trans. Knowl. Data Eng. 8(6), 911–922 (1996)

    Article  Google Scholar 

  5. Diop, L., Diop, C.T., Giacometti, A., Haoyuan, D.L., Soulet, A.: Sequential pattern sampling with norm constraints. In: Proceedings of ICDM 2018 (2018)

    Google Scholar 

  6. Domadiya, N., Rao, U.P.: Privacy preserving distributed association rule mining approach on vertically partitioned healthcare data. Proc. Comput. Sci. 148, 303–312 (2019)

    Article  Google Scholar 

  7. Dzyuba, V., van Leeuwen, M.: Learning what matters – sampling interesting patterns. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 534–546. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_42

    Chapter  Google Scholar 

  8. Giacometti, A., Soulet, A.: Anytime algorithm for frequent pattern outlier detection. Int. J. Data Sci. Anal. 2(3–4), 119–130 (2016)

    Article  Google Scholar 

  9. Gombos, G., Kiss, A.: Federated query evaluation supported by SPARQL recommendation. In: Yamamoto, S. (ed.) HIMI 2016. LNCS, vol. 9734, pp. 263–274. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40349-6_25

    Chapter  Google Scholar 

  10. Jin, R., Agrawal, G.: Systematic approach for optimizing complex mining tasks on multiple databases. In: Proceedings of ICDE, pp. 17, April 2006

    Google Scholar 

  11. Kum, H.C., Chang, J.H., Wang, W.: Sequential pattern mining in multi-databases via multiple alignment. DMKD J. 12(2–3), 151–180 (2006)

    MathSciNet  Google Scholar 

  12. Moens, S., Boley, M.: Instant exceptional model mining using weighted controlled pattern sampling. In: Blockeel, H., van Leeuwen, M., Vinciotti, V. (eds.) IDA 2014. LNCS, vol. 8819, pp. 203–214. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12571-8_18

    Chapter  Google Scholar 

  13. Otey, M.E., Wang, C., Parthasarathy, S., Veloso, A., Meira, W.: Mining frequent itemsets in distributed and dynamic databases. In: Proceedings of ICDM 2003, pp. 617–620. IEEE (2003)

    Google Scholar 

  14. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer, Switzerland (2011). https://doi.org/10.1007/978-3-030-26253-2

    Book  Google Scholar 

  15. Shen, H., Zhao, L., Li, Z.: A distributed spatial-temporal similarity data storage scheme in wireless sensor networks. IEEE Trans. Mob. Comput. 10(7), 982–996 (2011)

    Article  Google Scholar 

  16. Zhang, S., Zaki, M.J.: Mining multiple data sources: local pattern analysis. DMKD J. 12(2–3), 121–125 (2006)

    MathSciNet  Google Scholar 

  17. Zhu, X., Li, B., Wu, X., He, D., Zhang, C.: CLAP: collaborative pattern mining for distributed information systems. Decis. Support Syst. 52(1), 40–51 (2011)

    Article  Google Scholar 

  18. Zhu, X., Wu, X.: Discovering relational patterns across multiple databases. In: Proceedings of ICDE, pp. 726–735. IEEE (2007)

    Google Scholar 

Download references

Acknowledgements

This work has been partly supported by CEAMITIC (Centre d’Excellence Africain en Mathématiques, Informatique et TIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Soulet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diop, L., Diop, C.T., Giacometti, A., Soulet, A. (2020). Pattern Sampling in Distributed Databases. In: Darmont, J., Novikov, B., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2020. Lecture Notes in Computer Science(), vol 12245. Springer, Cham. https://doi.org/10.1007/978-3-030-54832-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54832-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54831-5

  • Online ISBN: 978-3-030-54832-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics