On the Relation Between Loss Functions and T-Norms | SpringerLink
Skip to main content

On the Relation Between Loss Functions and T-Norms

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11770))

Included in the following conference series:

Abstract

Deep learning has been shown to achieve impressive results in several domains like computer vision and natural language processing. A key element of this success has been the development of new loss functions, like the popular cross-entropy loss, which has been shown to provide faster convergence and to reduce the vanishing gradient problem in very deep structures. While the cross-entropy loss is usually justified from a probabilistic perspective, this paper shows an alternative and more direct interpretation of this loss in terms of t-norms and their associated generator functions, and derives a general relation between loss functions and t-norms. In particular, the presented work shows intriguing results leading to the development of a novel class of loss functions. These losses can be exploited in any supervised learning task and which could lead to faster convergence rates that the commonly employed cross-entropy loss.

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 825619.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss markov random fields and probabilistic soft logic. J. Mach. Learn. Res. 18, 1–67 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, vol. 221. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  3. Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation operators: properties classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators, pp. 3–104. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-7908-1787-4_1

    Chapter  MATH  Google Scholar 

  4. Diligenti, M., Gori, M., Sacca, C.: Semantic-based regularization for learning and inference. Artif. Intell. 244, 143–165 (2017)

    Article  MathSciNet  Google Scholar 

  5. Donadello, I., Serafini, L., d’Avila Garcez, A.: Logic tensor networks for semantic image interpretation. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 1596–1602 (2017)

    Google Scholar 

  6. Giannini, F., Diligenti, M., Gori, M., Maggini, M.: On a convex logic fragment for learning and reasoning. IEEE Trans. Fuzzy Syst. 27, 1407–1416 (2018)

    Article  Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learn., vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation functions: means. Inf. Sci. 181(1), 1–22 (2011)

    Article  MathSciNet  Google Scholar 

  9. Hájek, P.: Metamathematics of Fuzzy Logic, vol. 4. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-011-5300-3

    Book  MATH  Google Scholar 

  10. Jenei, S.: A note on the ordinal sum theorem and its consequence for the construction of triangular norms. Fuzzy Sets Syst. 126(2), 199–205 (2002)

    Article  MathSciNet  Google Scholar 

  11. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. position paper i: basic analytical and algebraic properties. Fuzzy Sets Syst. 143(1), 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  12. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. position paper ii: general constructions and parameterized families. Fuzzy Sets Syst. 145(3), 411–438 (2004)

    Article  MathSciNet  Google Scholar 

  13. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms position paper iii: continuous t-norms. Fuzzy Sets Syst. 145(3), 439–454 (2004)

    Article  MathSciNet  Google Scholar 

  14. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, vol. 8. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-015-9540-7

    Book  MATH  Google Scholar 

  15. Kolb, S., Teso, S., Passerini, A., De Raedt, L.: Learning SMT (IRA) constraints using smt solvers. In: IJCAI. pp. 2333–2340 (2018)

    Google Scholar 

  16. Koller, D., et al.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    Google Scholar 

  17. Novák, V., Perfilieva, I., Mockor, J.: Mathematical Principles of Fuzzy Logic, vol. 517. Springer, New York (2012). https://doi.org/10.1007/978-1-4615-5217-8

    Book  MATH  Google Scholar 

  18. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1), 107–136 (2006)

    Article  Google Scholar 

  19. Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68791-7

    Book  MATH  Google Scholar 

  20. Xu, J., Zhang, Z., Friedman, T., Liang, Y., Broeck, G.V.d.: A semantic loss function for deep learning with symbolic knowledge. arXiv preprint arXiv:1711.11157 (2017)

  21. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Advances in Neural Information Processing Systems, pp. 2319–2328 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Giannini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giannini, F., Marra, G., Diligenti, M., Maggini, M., Gori, M. (2020). On the Relation Between Loss Functions and T-Norms. In: Kazakov, D., Erten, C. (eds) Inductive Logic Programming. ILP 2019. Lecture Notes in Computer Science(), vol 11770. Springer, Cham. https://doi.org/10.1007/978-3-030-49210-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49210-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49209-0

  • Online ISBN: 978-3-030-49210-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics