Multidataset Incremental Training for Optic Disc Segmentation | SpringerLink
Skip to main content

Multidataset Incremental Training for Optic Disc Segmentation

  • Conference paper
  • First Online:
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference (EANN 2020)

Abstract

When convolutional neural networks are applied to image segmentation results depend greatly on the data sets used to train the networks. Cloud providers support multi GPU and TPU virtual machines making the idea of cloud-based segmentation as service attractive. In this paper we study the problem of building a segmentation service, where images would come from different acquisition instruments, by training a generalized U-Net with images from a single or several datasets. We also study the possibility of training with a single instrument and perform quick retrains when more data is available. As our example we perform segmentation of Optic Disc in fundus images which is useful for glaucoma diagnosis. We use two publicly available data sets (RIM-One V3, DRISHTI) for individual, mixed or incremental training. We show that multidataset or incremental training can produce results that are similar to those published by researchers who use the same dataset for both training and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Bander, B., Williams, B., Al-Nuaimy, W., Al-Taee, M., Pratt, H., Zheng, Y.: Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry 10(4), 87 (2018)

    Article  Google Scholar 

  2. Aujih, A., Izhar, L., Mériaudeau, F., Shapiai, M.I.: Analysis of retinal vessel segmentation with deep learning and its effect on diabetic retinopathy classification. In: 2018 International Conference on Intelligent and Advanced System (ICIAS), pp. 1–6. IEEE (2018)

    Google Scholar 

  3. Bhat, S.H., Kumar, P.: Segmentation of optic disc by localized active contour model in retinal fundus image. In: Smart Innovations in Communication and Computational Sciences, pp. 35–44. Springer (2019)

    Google Scholar 

  4. Bourne, R.R.: The optic nerve head in glaucoma. Community Eye Health 19(59), 44 (2006)

    Google Scholar 

  5. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)

    Google Scholar 

  6. Chollet, F.: Building powerful image classification models using very little data. Keras Blog (2016)

    Google Scholar 

  7. Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications Co., Greenwich (2017)

    Google Scholar 

  8. Civit-Masot, J., Luna-Perejón, F., Vicente-Díaz, S., Rodríguez Corral, J.M., Civit, A.: TPU cloud-based generalized U-net for eye fundus image segmentation. IEEE Access 7, 142379–142387 (2019). https://doi.org/10.1109/ACCESS.2019.2944692

    Article  Google Scholar 

  9. Das, P., Nirmala, S., Medhi, J.P.: Diagnosis of glaucoma using CDR and NRR area in retina images. Netw. Model. Anal. Health Inform. Bioinform. 5(1), 3 (2016)

    Article  Google Scholar 

  10. Dean, J., Patterson, D., Young, C.: A new golden age in computer architecture: empowering the machine-learning revolution. IEEE Micro 38(2), 21–29 (2018)

    Article  Google Scholar 

  11. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  12. Fumero, F., Alayón, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: Rim-one: an open retinal image database for optic nerve evaluation. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2011)

    Google Scholar 

  13. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  14. Kim, S.J., Cho, K.J., Oh, S.: Development of machine learning models for diagnosis of glaucoma. PLoS One 12(5), e0177726 (2017)

    Article  Google Scholar 

  15. Kim, S., Bae, W., Masuda, K., Chung, C., Hwang, D.: Fine-grain segmentation of the intervertebral discs from MR spine images using deep convolutional neural networks: BSU-Net. Appl. Sci. 8(9), 1656 (2018)

    Article  Google Scholar 

  16. Lian, S., Li, L., Lian, G., Xiao, X., Luo, Z., Li, S.: A global and local enhanced residual u-net for accurate retinal vessel segmentation. IEEE/ACM Trans. Comput. Biol. Bioinform. (2019)

    Google Scholar 

  17. Lingam, C.L., Mansberger, S., Miglior, S., Paranhos, A., Pasquale, L.R., Susanna Jr., R., Wang, N.: 4. risk factors (ocular). Diagnosis of Primary Open Angle Glaucoma: WGA consensus series-10, vol. 10, p. 127 (2017)

    Google Scholar 

  18. MacIver, S., MacDonald, D., Prokopich, C.L.: Screening, diagnosis, and management of open angle glaucoma. Can. J. Optom. 79(1), 5–71 (2017)

    Article  Google Scholar 

  19. Quigley, H.A., Broman, A.T.: The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3), 262–267 (2006)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

    Google Scholar 

  21. Sevastopolsky, A.: Optic disc and cup segmentation methods for glaucoma detection with modification of U-net convolutional neural network. Pattern Recogn. Image Anal. 27(3), 618–624 (2017)

    Article  Google Scholar 

  22. Shankaranarayana, S.M., Ram, K., Mitra, K., Sivaprakasam, M.: Joint optic disc and cup segmentation using fully convolutional and adversarial networks. In: Fetal, Infant and Ophthalmic Medical Image Analysis, OMIA 2017, pp. 168–176. Springer International Publishing (2017)

    Google Scholar 

  23. Sivaswamy, J., Krishnadas, S., Joshi, G.D., Jain, M., Tabish, A.U.S.: Drishti-GS: retinal image dataset for Optic Nerve Head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 53–56. IEEE (2014)

    Google Scholar 

  24. Thakur, N., Juneja, M.: Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed. Signal Process. Control 42, 162–189 (2018)

    Article  Google Scholar 

  25. Xiuqin, P., Zhang, Q., Zhang, H., Li, S.: A fundus retinal vessels segmentation scheme based on the improved deep learning U-net model. IEEE Access 7, 122634–122643 (2019). https://doi.org/10.1109/ACCESS.2019.2935138

    Article  Google Scholar 

  26. Zilly, J., Buhmann, J.M., Mahapatra, D.: Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput. Med. Imaging Graph. 55, 28–41 (2017)

    Article  Google Scholar 

  27. Zoph, B., Cubuk, E.D., Ghiasi, G., Lin, T.Y., Shlens, J., Le, Q.V.: Learning data augmentation strategies for object detection. arXiv preprint arXiv:1906.11172 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Civit-Masot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Civit-Masot, J., Billis, A., Dominguez-Morales, M., Vicente-Diaz, S., Civit, A. (2020). Multidataset Incremental Training for Optic Disc Segmentation. In: Iliadis, L., Angelov, P., Jayne, C., Pimenidis, E. (eds) Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the International Neural Networks Society, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48791-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48791-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48790-4

  • Online ISBN: 978-3-030-48791-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics