Predicting Permeability Based on Core Analysis | SpringerLink
Skip to main content

Abstract

Knowledge of permeability, a measure of the ability of rocks to allow fluids to flow through them, is essential for building accurate models of oil and gas reservoirs. Permeability is best measured in the laboratory using special core analysis (SCAL), but this is expensive and time-consuming. This is the first major work on predicting permeability in the in the UK Continental Shelf (UKCS) based only on routine core analysis (RCA) data and a machine-learning approach. We present a comparative analysis of the various machine learning algorithms and validate the results, using permeability measured on 273 core samples from 104 wells. Results suggest that machine learning can predict permeability with relatively high accuracy. This opens new research directions in particular in the oil and gas sector.

This work is part of a Knowledge Transfer Partnership (KTP) programme, funded by Corex UK Ltd. and Innovate UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Taylor & Francis, Monterey (1984)

    MATH  Google Scholar 

  2. Brian Ripley: tree: Classification and Regression Trees (2019). https://CRAN.R-project.org/package=tree. r package version 1.0-40

  3. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998). https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  4. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 155–161. MIT Press (1997). http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf

  5. Erofeev, A., Orlov, D., Ryzhov, A., Koroteev, D.: Prediction of porosity and permeability alteration based on machine learning algorithms. Transp. Porous Media 128(2), 677–700 (2019). https://doi.org/10.1007/s11242-019-01265-3

    Article  Google Scholar 

  6. Francis, J.G.F.: Comput. J., 265–271 (1961). https://academic.oup.com/comjnl/article/4/3/265/380632

  7. Friedman, J.H., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010). https://www.jstatsoft.org/index.php/jss/article/view/v033i01

    Article  Google Scholar 

  8. Fritsch, S., Guenther, F., Wright, M.N.: neuralnet: Training of neural networks (2019). https://CRAN.R-project.org/package=neuralnet

  9. Gholami, R., Shahraki, A.R., Jamali Paghaleh, M.: Prediction of hydrocarbon reservoirs permeability using support vector machine (2012). https://www.hindawi.com/journals/mpe/2012/670723/

  10. Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S., Hanachi, J.: Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. J. Petrol. Sci. Eng. 122(C), 643–656 (2014). https://doi.org/10.1016/j.petrol.2014.09.007

    Article  Google Scholar 

  11. Gümrah, F., Sarkar, S., Tasti, Y.A., Erbas, D.: Genetic algorithm for predicting permeability during production enhancement by acidizing. Energy Sources 23(3), 245–256 (2001). https://doi.org/10.1080/00908310151133942

  12. Hegde, C., Gray, K.E.: Use of machine learning and data analytics to increase drilling efficiency for nearby wells. J. Nat. Gas Sci. Eng. 40, 327–335 (2017). https://doi.org/10.1016/j.jngse.2017.02.019

    Article  Google Scholar 

  13. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42(1), 80–86 (2000). http://www.tandfonline.com/doi/abs/10.1080/00401706.2000.10485983

    Article  Google Scholar 

  14. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics. Springer-Verlag, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7. https://www.springer.com/gp/book/9781461471370

    Book  MATH  Google Scholar 

  15. Lee, J., Byun, J., Kim, B., Yoo, D.G.: Delineation of gas hydrate reservoirs in the Ulleung Basin using unsupervised multi-attribute clustering without well log data. J. Nat. Gas Sci. Eng. 46, 326–337 (2017). https://doi.org/10.1016/j.jngse.2017.08.007. http://www.sciencedirect.com/science/article/pii/S1875510017303104

    Article  Google Scholar 

  16. McPhee, C., Reed, J., Zubizarreta, I.: Core Analysis: A Best Practice Guide. Developments in Petroleum Science, vol. 64. Elsevier, Amsterdam (2015)

    Google Scholar 

  17. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien (2019). https://CRAN.R-project.org/package=e1071. r package version 1.7-3

  18. Ottesen, B., Hjelmeland, O.: The Value Added from Proper Core Analysis, p. 12 (2008)

    Google Scholar 

  19. R Core Team: R: A language and environment for statistical computing (ISBN 3-900051-07-0). R Foundation for Statistical Computing (2019). https://www.R-project.org/

  20. Riedmiller, M.: Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms. Comput. Stan. Interfaces 16(3), 265–278 (1994). https://doi.org/10.1016/0920-5489(94)90017-5. https://linkinghub.elsevier.com/retrieve/pii/0920548994900175

    Article  Google Scholar 

  21. Shang, C., Barnes, D.: Support vector machine-based classification of rock texture images aided by efficient feature selection. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, June 2012. https://doi.org/10.1109/IJCNN.2012.6252634

  22. Singh, S.: Permeability Prediction Using Artificial Neural Network (ANN): A Case Study of Uinta Basin. Society of Petroleum Engineers (2005). https://doi.org/10.2118/99286-STU. https://www-onepetro-org.ezproxy.rgu.ac.uk/conference-paper/SPE-99286-STU

  23. Stiles, J.J., Hutfilz, J.: The use of routine and special core analysis in characterizing Brent Group reservoirs, U.K. North Sea. J. Petrol. Technol. (U.S.) 44(6) (1992). https://doi.org/10.2118/18386-PA

    Article  Google Scholar 

  24. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B 58, 267–288 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Wold, H.: 11 - Path Models with Latent Variables: The NIPALS Approach**NIPALS = Nonlinear Iterative PArtial Least Squares. In: Blalock, H.M., Aganbegian, A., Borodkin, F.M., Boudon, R., Capecchi, V. (eds.) Quantitative Sociology: International Perspectives on Mathematical and Statistical Modeling, pp. 307–357. Academic Press, January 1975. https://doi.org/10.1016/B978-0-12-103950-9.50017-4. http://www.sciencedirect.com/science/article/pii/B9780121039509500174

    Chapter  Google Scholar 

  26. Wold, S.: Personal memories of the early PLS development. Chemometrics and Intelligent Laboratory Systems 58(2), 83–84 (2001). https://doi.org/10.1016/S0169-7439(01)00152-6. http://www.sciencedirect.com/science/article/pii/S0169743901001526

    Article  Google Scholar 

  27. Wong, K.W., Fung, C.C., Ong, Y.S., Gedeon, T.D.: Reservoir characterization using support vector machines. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC 2006), vol. 2, pp. 354–359, November 2005. https://doi.org/10.1109/CIMCA.2005.1631494

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Kontopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kontopoulos, H., Ahriz, H., Elyan, E., Arnold, R. (2020). Predicting Permeability Based on Core Analysis. In: Iliadis, L., Angelov, P., Jayne, C., Pimenidis, E. (eds) Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the International Neural Networks Society, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48791-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48791-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48790-4

  • Online ISBN: 978-3-030-48791-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics