Abstract
This paper describes a new approach on optimization of constraint satisfaction problems (CSPs) by means of substituting sub-CSPs with locally consistent regular membership constraints. The purpose of this approach is to reduce the number of fails in the resolution process, to improve the inferences made during search by the constraint solver by strengthening constraint propagation, and to maintain the level of propagation while reducing the cost of propagating the constraints. Our experimental results show improvements in terms of the resolution speed compared to the original CSPs and a competitiveness to the recent tabulation approach [1, 15]. Besides, our approach can be realized in a preprocessing step, and therefore wouldn’t collide with redundancy constraints or parallel computing if implemented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In [1], the detected constraints are substituted by table constraints, in contrast to the here presented approach; we will substitute them with regular constraints.
- 2.
For case 8 exists a deterioration of 65% (90%, 95%) for the RegularIntersected (Table and Regular) approach. To keep the graphic small the negative values were drawn in \(\frac{1}{10}\) of the real distance. In cases 5, 25 and 46 none of the four models found a solution in the time bounds of 10 min.
References
Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P., Salamon, A.Z.: Automatic discovery and exploitation of promising subproblems for tabulation. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 3–12. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_1
Löffler, S., Liu, K., Hofstedt, P.: The power of regular constraints in CSPs. In: 47. Jahrestagung der Gesellschaft für Informatik, Informatik 2017, Chemnitz, Germany, 25–29 September 2017, pp. 603–614 (2017). https://doi.org/10.18420/in2017_57
Löffler, S., Liu, K., Hofstedt, P.: The regularization of CSPs for rostering, planning and resource management problems. In: Iliadis, L., Maglogiannis, I., Plagianakos, V. (eds.) AIAI 2018. IAICT, vol. 519, pp. 209–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92007-8_18
Löffler, S., Liu, K., Hofstedt, P.: A meta constraint satisfaction optimization problem for the optimization of regular constraint satisfaction problems. In: Rocha, A.P., Steels, L., van den Herik, J. (eds.) Proceedings of the 11th International Conference on Agents and Artificial Intelligence, ICAART 2019, Prague, Czech Republic, 19–21 February 2019, vol. 2, pp. 435–442. SciTePress (2019). https://doi.org/10.5220/0007260204350442
Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI 2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, 22–27 August 2004, pp. 146–150. IOS Press (2004)
Cheng, B.M.W., Lee, J.H.M., Wu, J.C.K.: Speeding up constraint propagation by redundant modeling. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 91–103. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2_68
Dechter, R.: Constraint Processing. Elsevier Morgan Kaufmann, Burlington (2003)
Dekker, J.J., Björdal, G., Carlsson, M., Flener, P., Monette, J.: Auto-tabling for subproblem presolving in MiniZinc. Constraints 22(4), 512–529 (2017). https://doi.org/10.1007/s10601-017-9270-5
Gent, I.: CSPLib problem 014: Solitaire battleships. http://www.csplib.org/Problems/prob014. Accessed 07 May 2019
Gent, I.P., et al.: Search in the patience game ‘black hole’. AI Commun. 20(3), 211–226 (2007). http://content.iospress.com/articles/ai-communications/aic405
Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposition. J. Exp. Algorithmics (JEA) 13, 1 (2008)
Hamadi, Y.: Optimal distributed arc-consistency. Constraints 7(3–4), 367–385 (2002). https://doi.org/10.1023/A:1020594125144
Hellsten, L., Pesant, G., van Beek, P.: A domain consistency algorithm for the stretch constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 290–304. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_23
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Boston (1979)
Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Constraints 16(4), 341–371 (2011). https://doi.org/10.1007/s10601-011-9107-6
Liu, K., Löffler, S., Hofstedt, P.: Hypertree decomposition: the first step towards parallel constraint solving. In: Seipel, D., Hanus, M., Abreu, S. (eds.) WFLP/WLP/INAP -2017. LNCS (LNAI), vol. 10997, pp. 81–94. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00801-7_6
Nightingale, P.: CSPLib problem 081: Black hole. http://www.csplib.org/Problems/prob081. Accessed 07 May 2019
Pesant, G.: A filtering algorithm for the stretch constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 183–195. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7_13
Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_36
Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016). http://www.choco-solver.org/. Accessed 07 May 2019
Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_45
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Löffler, S., Liu, K., Hofstedt, P. (2020). The Regularization of Small Sub-Constraint Satisfaction Problems. In: Hofstedt, P., Abreu, S., John, U., Kuchen, H., Seipel, D. (eds) Declarative Programming and Knowledge Management. INAP WLP WFLP 2019 2019 2019. Lecture Notes in Computer Science(), vol 12057. Springer, Cham. https://doi.org/10.1007/978-3-030-46714-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-46714-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46713-5
Online ISBN: 978-3-030-46714-2
eBook Packages: Computer ScienceComputer Science (R0)