Abstract
Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solvers can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm’s ability to generate strong dual bounds through extensive computational experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
MUMPS: Multifrontal massively parallel sparse direct solver. http://mumps.enseeiht.fr
Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin (2007). https://doi.org/10.14279/depositonce-1634. URN:nbn:de:kobv:83-opus-16117
Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38189-8_18
van Ackooij, W., Frangioni, A., de Oliveira, W.: Inexact stabilized benders’ decomposition approaches with application to chance-constrained problems with finite support. Comput. Optim. Appl. 65(3), 637–669 (2016). https://doi.org/10.1007/s10589-016-9851-z
Alidaee, B.: Zero duality gap in surrogate constraint optimization: a concise review of models. Eur. J. Oper. Res. 232(2), 241–248 (2014). https://doi.org/10.1016/j.ejor.2013.04.023
Amor, H.M.B., Desrosiers, J., Frangioni, A.: On the choice of explicit stabilizing terms in column generation. Discrete Appl. Math. 157(6), 1167–1184 (2009). https://doi.org/10.1016/j.dam.2008.06.021
Balas, E.: Discrete programming by the filter method. Oper. Res. 15(5), 915–957 (1967). https://doi.org/10.1287/opre.15.5.915
Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89(1–3), 3–44 (1998). https://doi.org/10.1016/s0166-218x(98)00136-x
Banerjee, K.: Generalized Lagrange multipliers in dynamic programming. Ph.D. thesis, University of California, Berkeley (1971)
Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming with indicator constraints. Math. Program. 151(1), 191–223 (2015). https://doi.org/10.1007/s10107-015-0891-4
COIN-OR: CppAD, a package for differentiation of C++ algorithms. http://www.coin-or.org/CppAD
COIN-OR: Ipopt, Interior point optimizer. http://www.coin-or.org/Ipopt
Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. Society for Industrial and Applied Mathematics, Philadelphia (2000). https://doi.org/10.1137/1.9780898719857
Djerdjour, M., Mathur, K., Salkin, H.M.: A surrogate relaxation based algorithm for a general quadratic multi-dimensional knapsack problem. Oper. Res. Lett. 7(5), 253–258 (1988). https://doi.org/10.1016/0167-6377(88)90041-7
Dyer, M.E.: Calculating surrogate constraints. Math. Program. 19(1), 255–278 (1980). https://doi.org/10.1007/bf01581647
Fisher, M., Lageweg, B., Lenstra, J., Kan, A.: Surrogate duality relaxation for job shop scheduling. Discrete Appl. Math. 5(1), 65–75 (1983). https://doi.org/10.1016/0166-218x(83)90016-1
Gavish, B., Pirkul, H.: Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality. Math. Program. 31(1), 78–105 (1985). https://doi.org/10.1007/bf02591863
Geoffrion, A.M.: Implicit enumeration using an imbedded linear program. Technical report, May 1967. https://doi.org/10.21236/ad0655444
Glover, F.: A multiphase-dual algorithm for the zero-one integer programming problem. Oper. Res. 13(6), 879–919 (1965). https://doi.org/10.1287/opre.13.6.879
Glover, F.: Surrogate constraints. Oper. Res. 16(4), 741–749 (1968). https://doi.org/10.1287/opre.16.4.741
Glover, F.: Surrogate constraint duality in mathematical programming. Oper. Res. 23(3), 434–451 (1975). https://doi.org/10.1287/opre.23.3.434
Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977). https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
Glover, F.: Tutorial on surrogate constraint approaches for optimization in graphs. J. Heuristics 9(3), 175–227 (2003). https://doi.org/10.1023/a:1023721723676
Gomory, R.E.: An algorithm for the mixed integer problem. Technical report. P-1885, The RAND Corporation, June 1960
Greenberg, H.J., Pierskalla, W.P.: Surrogate mathematical programming. Oper. Res. 18(5), 924–939 (1970). https://doi.org/10.1287/opre.18.5.924
Grossmann, I.E., Sahinidis, N.V.: Special issue on mixed integer programmingand its application to engineering, part I. Optim. Eng. 3(4), 52–76 (2002)
Hendel, G.: Empirical analysis of solving phases in mixed integer programming. Master’s thesis, Technische Universität Berlin, August 2014. URN:nbn:de: http://nbn-resolving.de/urn:nbn:de:0297-zib-54270
Horst, R., Tuy, H.: Global Optimization. Springer, Berlin Heidelberg (1996). DOI: https://doi.org/10.1007/978-3-662-03199-5
ILOG, I.: ILOG CPLEX: High-performance software for mathematical programming and optimization. http://www.ilog.com/products/cplex/
Kelley Jr., J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960). https://doi.org/10.1137/0108053
Junttila, T., Kaski, P.: Bliss: a tool for computing automorphism groups and canonical labelings of graphs. (2012). http://www.tcs.hut.fi/Software/bliss/
Karwan, M.H.: Surrogate constraint duality and extensions in integer programming. Ph.D. thesis, Georgia Institute of Technology, January 1976
Karwan, M.H., Rardin, R.L.: Some relationships between Lagrangian and surrogate duality in integer programming. Math. Program. 17(1), 320–334 (1979). https://doi.org/10.1007/bf01588253
Karwan, M.H., Rardin, R.L.: Surrogate dual multiplier search procedures in integer programming. Oper. Res. 32(1), 52–69 (1984). https://doi.org/10.1287/opre.32.1.52
Kim, S.L., Kim, S.: Exact algorithm for the surrogate dual of an integer programming problem: subgradient method approach. J. Optim. Theory Appl. 96(2), 363–375 (1998). https://doi.org/10.1023/a:1022622231801
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part i – convex underestimating problems. Math. Program. 10(1), 147–175 (1976). https://doi.org/10.1007/bf01580665
du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation. Discrete Math. 194(1–3), 229–237 (1999). https://doi.org/10.1016/s0012-365x(98)00213-1
MINLP library. http://www.minlplib.org/
Nakagawa, Y.: An improved surrogate constraints method for separable nonlinear integer programming. J. Oper. Res. Soc. Jpn 46(2), 145–163 (2003). https://doi.org/10.15807/jorsj.46.145
Narciso, M.G., Lorena, L.A.N.: Lagrangean/surrogate relaxation for generalized assignment problems. Eur. J. Oper. Res. 114(1), 165–177 (1999). https://doi.org/10.1016/s0377-2217(98)00038-1
Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0–1 mixed integer programs. Math. Program. 46(1–3), 379–390 (1990). https://doi.org/10.1007/bf01585752
Quesada, I., Grossmann, I.E.: A global optimization algorithm for linear fractional and bilinear programs. J. Glob. Optim. 6(1), 39–76 (1995). https://doi.org/10.1007/bf01106605
Ryoo, H., Sahinidis, N.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995). https://doi.org/10.1016/0098-1354(94)00097-2
Sarin, S., Karwan, M.H., Rardin, R.L.: A new surrogate dual multiplier search procedure. Naval Res. Logistics 34(3), 431–450 (1987). https://doi.org/10.1002/1520-6750(198706)34:3<431::aid-nav3220340309>3.0.co;2-p
SCIP - Solving Constraint Integer Programs. http://scip.zib.de
Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Springer, New York (1999). https://doi.org/10.1007/978-1-4757-4388-3
Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Glob. Optim. 22(1/4), 233–261 (2002). https://doi.org/10.1023/a:1013819515732
Templeman, A.B., Xingsi, L.: A maximum entropy approach to constrained non-linear programming. Eng. Optim. 12(3), 191–205 (1987). https://doi.org/10.1080/03052158708941094
Vielma, J.P.: Small and strong formulations for unions of convex sets from the Cayley embedding. Math. Program. 177(1–2), 21–53 (2018). https://doi.org/10.1007/s10107-018-1258-4
Vigerske, S.: Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programming. Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II (2013). URN:nbn:de:kobv:11-100208240
Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework. Optim. Methods Softw. 33(3), 563–593 (2017). https://doi.org/10.1080/10556788.2017.1335312
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2005). https://doi.org/10.1007/s10107-004-0559-y
Xingsi, L.: An aggregate constraint method for non-linear programming. J. Oper. Res. Soc. 42(11), 1003–1010 (1991). https://doi.org/10.1057/jors.1991.190
Acknowledgements
We gratefully acknowledge support from the Research Campus MODAL (BMBF Grant 05M14ZAM) and the Institute for Data Valorization (IVADO) through an IVADO Postdoctoral Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Appendix
A Appendix
1.1 A.1 The Effect of Stabilization
To visualize the importance of stabilization techniques, we use the instance genpooling_lee1. Figure 1 shows the achieved dual bounds after each iteration of Algorithm 1 for DEFAULT and NOSTAB. The achieved dual bound of \(-4775.26\) with DEFAULT is significantly better than the dual bound of \(-5006.95\) when using NOSTAB. More importantly, stabilization helps to reach the final dual bound much earlier.
1.2 A.2 Detailed Results for the DUALBOUND Experiment
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Müller, B., Muñoz, G., Gasse, M., Gleixner, A., Lodi, A., Serrano, F. (2020). On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming. In: Bienstock, D., Zambelli, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2020. Lecture Notes in Computer Science(), vol 12125. Springer, Cham. https://doi.org/10.1007/978-3-030-45771-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-45771-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45770-9
Online ISBN: 978-3-030-45771-6
eBook Packages: Computer ScienceComputer Science (R0)