Integer Plane Multiflow Maximisation: Flow-Cut Gap and One-Quarter-Approximation | SpringerLink
Skip to main content

Integer Plane Multiflow Maximisation: Flow-Cut Gap and One-Quarter-Approximation

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12125))

Abstract

In this paper, we bound the integrality gap and the approximation ratio for maximum plane multiflow problems and deduce bounds on the flow-cut-gap. Planarity means here that the union of the supply and demand graph is planar. We first prove that there exists a multiflow of value at least half of the capacity of a minimum multicut. We then show how to convert any multiflow into a half-integer one of value at least half of the original multiflow. Finally, we round any half-integer multiflow into an integer multiflow, losing again at most half of the value, in polynomial time, achieving a 1/4-approximation algorithm for maximum integer multiflows in the plane, and an integer-flow-cut gap of 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Given a partition of V so that all edges in F join different classes, those of E joining different classes form a multicut, and inclusionwise minimal multicuts are like this.

  2. 2.

    Seymour’s correspondence through dualisation reduces this problem to checking whether \(F^*\) is a minimum weight “\(T_{F^*}\)-join” (see e.g. [20]) in \((G+H)^*\) with weights defined by c and d, where \(T_{F^*}\) is the set of odd degree vertices of \(F^*\). This also provides a polynomial separation algorithm for maximising the sum of (not necessarily integer) demands satisfying the cut condition.

  3. 3.

    i.e. a cut with both shores containing more than one vertex, and meeting every perfect matching in exactly one edge. Lovász characterised graphs without nontrivial tight cuts as “bicritical 3-connected graphs” [15]. Such graphs may have arbitrarily many vertices, even under the planarity constraint.

  4. 4.

    This is not an allowed step for a polynomial algorithm, but it will not really be necessary to do it. The choice of the cuts to be rounded down or up will be clear from the proof without actually executing this subdivision. The choices for rounding concern a family of size O(|V|).

  5. 5.

    \(\{\delta _{E^*\cup F^*}(L)^*:L\in \mathcal {L}\}=\{P\cup e_P: P\in \mathcal {P}, f(P)>0\}\), as before.

References

  1. Appel, K., Haken, W.: A proof of the four color theorem. Discrete Math. 16, 179–180 (1976)

    Article  MathSciNet  Google Scholar 

  2. Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)

    Article  MathSciNet  Google Scholar 

  3. Cheriyan, J., Karloff, H., Khandekar, R., Könemann, J.: On the integrality ratio for tree augmentation. Oper. Res. Lett. 36(4), 399–401 (2008)

    Article  MathSciNet  Google Scholar 

  4. Edmonds, J., Rick, G.: A min-max relation for submodular functions in graphs. Ann. Discrete Math. I, 185–204 (1977)

    Article  Google Scholar 

  5. Fiorini, S., Hardy, N., Reed, B., Vetta, A.: Approximate min-max relations for odd cycles in planar graphs. Math. Program. 110(1), 71–91 (1995)

    Article  MathSciNet  Google Scholar 

  6. Frank, A., Szigeti, Z.: A note on packing paths in planar graphs. Math. Program. 70, 201–209 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut theorems and their applications. SIAM J. Comput. 25(2), 235–251 (1996)

    Article  MathSciNet  Google Scholar 

  8. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MathSciNet  Google Scholar 

  9. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In: Linear Inequalities and Related Systems, pp. 223–246 (1956)

    Google Scholar 

  10. Klein, P., Plotkin, S.A., Rao, S.: Excluded minors, network decomposition, and multicommodity flow. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pp. 682–690. ACM (1993)

    Google Scholar 

  11. Klein, P.N., Mathieu, C., Zhou, H.: Correlation clustering and two-edge-connected augmentation for planar graphs. In: 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

  12. Korach, E., Penn, M.: Tight integral duality gap in the chinese postman problem. Mateh. Program. 55, 183–191 (1992)

    Article  MathSciNet  Google Scholar 

  13. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, Collection Algorithms and Combinatorics, vol. 21, 5th edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24488-9

    Book  MATH  Google Scholar 

  14. Král, D., Voss, H.: Edge-disjoint odd cycles in planar graphs. J. Comb. Theor. Ser. B 90, 107–120 (2004)

    Article  MathSciNet  Google Scholar 

  15. Lovász, L., Plummer, M.: Matching Theory. Akadémiai Kiadó and Springer (1986)

    Google Scholar 

  16. Middendorf, M., Pfeiffer, F.: On the complexity of the disjoint paths problem. Combinatorica 13(1), 97–107 (1993)

    Article  MathSciNet  Google Scholar 

  17. Okamura, H., Seymour, P.D.: Multicommodity flows in planar graphs. J. Comb. Theor. Ser. B 31(1), 75–81 (1981)

    Article  MathSciNet  Google Scholar 

  18. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Efficiently four-coloring planar graphs. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 571–575 (1996)

    Google Scholar 

  19. Schrijver, A.: Theory of Linear and Integer Programming. Wiley and Chichester (1986)

    Google Scholar 

  20. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  21. Seguin-Charbonneau, L., Bruce Shepherd, F.: Maximum edge-disjoint paths in planar graphs with congestion 2. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 200–209. IEEE (2011)

    Google Scholar 

  22. Seymour, P.D.: On odd cuts and plane multicommodity flows. Proc. London Math. Soc. 3(1), 178–192 (1981)

    Article  MathSciNet  Google Scholar 

  23. Tardos, É., Vazirani, V.V.: Improved bounds for the max-flow min-multicut ratio for planar and k\(\_\)r, r-free graphs. Inf. Process. Lett. 47(2), 77–80 (1993)

    Article  MathSciNet  Google Scholar 

  24. Tutte, W.T.: Lectures on matroids. J. Res. Nat. Bur. Stan. B 69, 1–47 (1965)

    MathSciNet  MATH  Google Scholar 

  25. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual approximation algorithm for generalized steiner network problems. Combinatorica 15(3), 435–454 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garg, N., Kumar, N., Sebő, A. (2020). Integer Plane Multiflow Maximisation: Flow-Cut Gap and One-Quarter-Approximation. In: Bienstock, D., Zambelli, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2020. Lecture Notes in Computer Science(), vol 12125. Springer, Cham. https://doi.org/10.1007/978-3-030-45771-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45771-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45770-9

  • Online ISBN: 978-3-030-45771-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics